|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценка параметров множественной регрессионной модели методом наименьших квадратовДля построения МНК-оценок параметров множественной регрессии по выборочным данным используется критерий отбора следующего вида: , - Вектор-столбец остатков множественной регрессии. Выразим ESS через вектор оценок параметров: . Результат дифференцирования критерия ESS по вектору-строке оценок параметров дает необходимое условие экстремума: , . Таким образом, система нормальных уравнений в матричной форме имеет вид: , а вектор-столбец оценок параметров модели определяется линейным выражением . Вектор оценок параметров модели – случайный вектор, его основными количественными характеристиками являются: вектор мат.ожиданий и матрица автоковариаций. Основные числовые характеристики вектора оценок параметров классической множественной регрессионной модели. Вектор оценок параметров модели – случайный вектор, его основными количественными характеристиками являются: вектор мат.ожиданий и матрица автоковариаций. A=(XTX)-1XT таким образом, МНК-оценки параметров множественной регрессии несмещенные. Построим матрицу автоковариаций , тк Доказательство эффективности несмещенных оценок b~ выполняется путем сравнения их дисперсий Var(b^) с дисперсиями Var(b~) вектора линейных несмещенных оценок b~, определяемого выражением b~ =(A+C)Y, где С— произвольная (k*n)-матрица. Тогда, в силу несмещенности оценки b~ и равенства можно записать: b=E(b~)= (A+C)E(Y) = (A+C)Xb = AXb +CXb = b + CXb, откудаследует: CX=0. Определим автоковариационную матрицу вектора оценок b~: Диагональные элементы автоковариационных матриц оценок параметров — их дисперсии. Диагональные элементы матрицы ССТ неотрицательны, поэтому Var(b^)>=Var(b~), т. е. оценка МНК является эффективной, имея минимальную дисперсию по сравнению с любыми несмещенными оценками неизвестного параметра в классе линейных процедур. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |