АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод наименьших квадратов (МНК)

Читайте также:
  1. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  2. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  3. I. Методические основы
  4. I. Методические основы оценки эффективности инвестиционных проектов
  5. I. Предмет и метод теоретической экономики
  6. I. Что изучает экономика. Предмет и метод экономики.
  7. II. Метод упреждающего вписывания
  8. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  9. II. Методы непрямого остеосинтеза.
  10. II. Проблема источника и метода познания.
  11. II. Рыночные методы.
  12. II. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

Аппроксимация на основе интерполяции не имеет смысла или невозможна, когда исходные данные содержат погрешности, повторы или очень большое количество точек. В этих случаях используют сглаживание: критерий близости аппроксимирующей функции к исходным данным , рассматривается как минимальное отклонение значений в заданных точках. Количественно отклонение может быть оценено методом наименьших квадратов (МНК), согласно которому необходимо минимизировать сумму квадратов:

где , - значения данных - значение аппроксимирующей функции в точке ; - число данных, - незвестные параметры. Задача сводится к нахождению экстремума функции параметров .

Линейная аппроксимация. В случае линейной формулы сумма квадратов принимает вид:

Эта ункция имеет минимум в точках, в которых частные производные от по параметрам и обращаются в нуль, т.е.

,

Решая систему уравнений, получим значения и уравнения .

Полиномиальная аппроксимация. В случае выбора зависимости в виде полинома, например, 2-й степени сумма квадратов принимает вид:

Эта функция имеет минимум в точках, в которых частные производные от по параметрам , , обращаются в нуль, т.е.:

, ,

В результате дифференцирования и элементарных преобразований для определения параметров получают систему из трех линейных уравнений с тремя неизвестными:

Или


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)