АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тангенциальная составляющая ускорения 8 страница

Читайте также:
  1. I. Перевести текст. 1 страница
  2. I. Перевести текст. 10 страница
  3. I. Перевести текст. 11 страница
  4. I. Перевести текст. 2 страница
  5. I. Перевести текст. 3 страница
  6. I. Перевести текст. 4 страница
  7. I. Перевести текст. 5 страница
  8. I. Перевести текст. 6 страница
  9. I. Перевести текст. 7 страница
  10. I. Перевести текст. 8 страница
  11. I. Перевести текст. 9 страница
  12. Il pea.M em u ifJy uK/uu 1 страница

Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и вре­мени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сфор­мулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптичес­кие), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной систе­мы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы от­счета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) вовсех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаме­нтальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представ­лений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное эксперимен­тальное подтверждение, являясь тем самым обоснованием постулатов Эйнштей­на — обоснованием специальной теории относительности.

§ 36. Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразова­ниями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: К (с координатами х, у, z) и К' (с координатами х', у', z'), движущуюся относительно К (вдоль оси х) со скоростью v = const (рис. 59). Пусть в начальный момент времени t=t'= 0, когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

х = ct, (36.1)

то в системе К' координата светового импульса в момент достижения точки А

х' = ct'. (36.2)

где t' — время прохождения светового импульса от начала координат до точки А в си­стеме К'. Вычитая (36.1) из (36.2), получаем

х' – х = c(t' – t).

Так как х' ¹ х (система К' перемещается по отношению к системе К), то

t ' ¹ t,

т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относитель­ный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. t=t ').

Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:

заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна (формулы представлены для случая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности,как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны.

Преобразования Лоренца имеют вид

(36.3)

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при v. Это очевидно, таккак если скорость движения системы К' относительно системы К равна v, то скорость движения К относительно К' рав­на – v.

Из преобразований Лоренца вытекает также, что при малых скоростях (по сравне­нию со скоростью с), т. е. когда b <<1, они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следова­тельно, предельным случаем преобразований Лоренца. При v>c выражения (36.3) для х, t, х', t' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распрост­ранения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как расстоя­ние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразова­ний Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преоб­разования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким об­разом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространст­венные и временные координаты, образующие четырехмерное пространство-время.

§ 37. Следствия из преобразований Лоренца

1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x 1 и x 2 в моменты времени t 1 и t 2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (x 1 2являются одновременными (t 1 =t 2), то, согласно преобразованиям Лоренца (36.3),

т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х 1 ¹ x 2), но одновременны (t 1 = t 2), то в системе К', согласно преобразованиям Лоренца (36.3),

Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности определяется знаком выраже­ния v (x 1x 2 ), поэтому в различных точках системы отсчета К' (при разных v) разность будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длитель­ность которого (разность показаний часов в конце и начале события) t = t 2 – t 1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

(37.1)

причем началу и концу события, согласно (36.3), соответствуют

(37.2)

Подставляя (37.2) в (37.1), получаем

или

(37.3)

Из соотношения (37.3) вытекает, что t < t ', т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени t', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала t, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения для t и t ' обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме.

В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществля­ется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света ( =0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонав­та в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в раз более молодым, чем его брат-близнец, оста­вшийся на Земле. Это явление, получившее название парадокса близнецов, в дейст­вительности парадокса нt содержит. Дело в том, что принцип относительности утверж­дает равноправность не всяких систем отсчета, а только инерциальных. Неправиль­ность рассуждения состоит в том, что системы отсчета, связанные с близнецами, не эквивалентны: земная система инерциальна, а корабельная — неинерциальна, поэтому к ним принцип относительности неприменим.

Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроиз­вольно распадающихся элементарных частиц в опытах с p-мезонами. Среднее время жизни покоящихся p-мезонов (по часам, движущимся вместе с ними) t» 2,2×10–8 с. Следовательно, p-мезоны, образующиеся в верхних слоях атмосферы (на высоте»30 км) и движущиеся со скоростью, близкой к скорости с, должны были бы прохо­дить расстояния сt» 6,6 м, т. е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни p-мезона t ' = t / , а путь этих частиц в атмосфере vt ' = bct '= bct/ . Так как b»1, то vt '>> ct.

3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где и не изменяющиеся со временем t' координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Опреде­лим длину этого стержня в системе К, относительно которой он движется со скоро­стью v. Для этого необходимо измерить координаты его концов x 1 и x 2 в системе К в один и тот же момент времени t. Их разность l = х 2 – х 1 и определяет длину стержня в системе К. Используя преобразования Лоренца (36.3), получим

т. е.

(37.4)

Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (37.4).

Из выражения (37.4) следует, что линейный размер тела, движущегося отно­сительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т. е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (36.3) следует, что

т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.

4. Релятивистский закон сложения скоростей. Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоро­стью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К' в момент времени t ' — координатами х', у', z', то

представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (36.3),

Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности:

(37.5)

Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с ux, а скорость и' относительно К' — с . Тогда закон сложения скоростей примет вид

(37.6)

Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью с, то формулы (37.5) и (37.6) переходят в закон сложения скоростей в классической механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.

 

Релятивистский закон сложения скоростей подчиняется второму постулату Эйнш­тейна (см. § 35). Действительно, если u' = c, то формула (37.6) примет вид (аналогично можно показать, что при и = с скорость u' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в со­гласии с постулатами Эйнштейна.

Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равна с. В качестве примера рассмотрим предельный случай u ' = v = с. После подстановки в формулу (37.6) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с / n (n — абсолютный показатель преломления среды), предельной величиной не является (подробнее см. § 189).

§ 38. Интервал между событиями

Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разнос. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной фи­зической величины, не зависящей от системы отсчета, т. е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнш­тейна, в котором каждое событие характеризуется четырьмя координатами (х, у, z, t),такой физической величиной является интервал между двумя событиями:

(38.1)

где — расстояние между точками трехмерного пространства, в которых эти события произошли. Введя обозначение t 12 = t 2 – t 1, получим

Покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив D t = t 2 – t 1, D x = x 2 – x 1, D y = y 2 – y 1 и D z = z 2 – z 1, выражение (38.1) можно записать в виде

Интервал между теми же событиями в системе К' равен

(38.2)

Согласно преобразованиям Лоренца (36.3),

Подставив эти значения в (38.2), после элементарных преобразований получим, что т. е.

Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.

Теория относительности, таким образом, сформулировала новое представление о пространстве и времени. Пространственно-временные отношения являются не аб­солютными величинами, как утверждала механика Галилея — Ньютона, а относитель­ными. Следовательно, представления об абсолютном пространстве и времени являют­ся несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи — пространство-время. Простран­ство и время не существуют вне материи и независимо от нее.

Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т. е. не завися­щей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

§ 39. Основной закон релятивистской динамики материальной точки

Масса движущихся релятивистских частиц зависит от их скорости:

(39.1)

где m 0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в ваку­уме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Из принципа относительности Эйнштейна (см. § 35), утверждающего инвариант­ность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской динамики материальной точки имеет вид

(39.2)

или

(39.3)

где

(39.4)

— релятивистский импульс материальной точки.

Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньюто­новской механики (6.7). Однако физический смысл его другой: справа стоит производ­ная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учиты­вать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства (см. § 9) в релятивистской механике выполняет­ся закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выраже­ние для импульса.

Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (39.2) переходит в основной закон (см. (6.5)) классичес­кой механики. Следовательно, условием применимости законов классической (ньюто­новской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально пере­ход осуществляется при с ®¥). Таким образом, классическая механика — это меха­ника макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. § 116) будет показано, что на основании этой зависимости производятся расчеты ускорителей.

§ 40. Закон взаимосвязи массы и энергии

Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном переме­щении равно работе силы на этом перемещении:

(40.1)

Учитывая, что dr = v d t, и подставив в (40.1) выражение (39.2), получаем

Преобразовав данное выражение с учетом того, что vdv = v d v, и формулы (39.1), придем к выражению

(40.2)

т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.

Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя m 0, то, проинтегрировав (40.2), получим

(40.3)

или кинетическая энергия релятивистской частицы имеет вид

(40.4)

Выражение (40.4) при скоростях v«c переходит в классическое:

(разлагая в ряд при v << c, правомерно пренебречь чле­нами второго порядка малости).

А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы D m сопровождается изменением полной энергии частицы,

(40.5)

Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:

(40.6)

Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — за­кон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.

Закон (40.6) можно, учитывая выражение (40.3), записать в виде

откуда следует, что покоящееся тело (T =0) также обладает энергией

называемой энергией покоя. В классической механике энергия покоя Е 0 не учитывается, считая, что при v =0 энергия покоящегося тела равна нулю.

В силу однородности времени (см. § 13) в релятивистской механике, как и в клас­сической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.019 сек.)