АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тангенциальная составляющая ускорения 46 страница

Читайте также:
  1. I. Перевести текст. 1 страница
  2. I. Перевести текст. 10 страница
  3. I. Перевести текст. 11 страница
  4. I. Перевести текст. 2 страница
  5. I. Перевести текст. 3 страница
  6. I. Перевести текст. 4 страница
  7. I. Перевести текст. 5 страница
  8. I. Перевести текст. 6 страница
  9. I. Перевести текст. 7 страница
  10. I. Перевести текст. 8 страница
  11. I. Перевести текст. 9 страница
  12. Il pea.M em u ifJy uK/uu 1 страница

Фотопроводимость (см. § 202) полупроводниковувеличение электропроводности полу­проводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hn ³ D E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 324, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.

Если полупроводник содержит примеси, то фотопроводимость может возникать и при hn < D E: для полупроводников с донорной примесью фотон должен обладать энергией hn ³ D ЕD, а для полупроводников с акцепторной примесью — hn ³ D ЕA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n -типа (рис. 324, б) или из валентной зоны на акцепторные уровни в случае полупроводника p -типа (рис. 324, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников п -типа и чисто дырочной для полупроводников p -типа.

Таким образом, если

(244.1)

(D E п — в общем случае энергия активации примесных атомов), то в полупроводнике возбуждается фотопроводимость. Из (244.1) можноопределить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается:

Учитывая значения D E и D E п для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников — на инфрак­расную.

На рис. 325 представлена типичная зависимость фотопроводимости j и коэффициен­та поглощения { от длины волны l падающего на полупроводник света. Из рисунка следует, что при l>l 0 фотопроводимость действительно не возбуждается. Спад фото­проводимости в коротковолновой части полосы поглощения объясняется большой скоростью рекомбинации в условиях сильного поглощения в тонком поверхностном слое толщиной х»1 мкм (коэффициент поглощения»106 м–1).

Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место экситонный механизм поглощения. Экситоны представляют собой квази­частицы — электрически нейтральные связанные состояния электрона и дырки, образу­ющиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны элект­рически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

§ 245. Люминесценция твердых тел

В природе давно известно излучение, отличное по своему характеру от всех известных видов излучения (теплового излучения, отражения, рассеяния света и т. д.). Этим излучением является люминесцентное излучение, примерами которого может служить свечение тел при облучении их видимым, ультрафиолетовым и рентгеновским излуче­нием, g-излучением и т.д. Вещества, способные под действием различного рода возбуждений светиться, получили название люминофоров.

Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. Первая часть этого определения приводит к выводу, что люминесценция не является тепловым излучением (см. § 197), поскольку любое тело при температуре выше 0 К излучает электромагнитные волны, а такое излучение является тепловым. Вторая часть показывает, что люминесценция не является таким видом свечения, как отражение и рассеяние света, тормозное излучение заряженных частиц и т. д. Период световых колебаний составляет примерно 10–15 с, поэтому длительность, по которой свечение можно отнести к люминесценции, больше—примерно 10–10 с. Признак длительности свечения дает возможность отличить люминесценцию от других нерав­новесных процессов. Так, по этому признаку удалось установить, что излучение Вавилова — Черенкова (см. § 189) нельзя отнести к люминесценции.

В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), электролюминесценцию (под дейст­вием электрического поля), радиолюминесценцию (при возбуждении ядерным излучени­ем, например g-излучением, нейтронами, протонами), хемилюминесценцию (при хи­мических превращениях), триболюминесценцию (при растирании и раскалывании неко­торых кристаллов, например сахара). По длительности свечения условно различают: флуоресценцию (t £10–8с)и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.

Первое количественное исследование люминесценции проведено более ста лет назад Дж. Стоксом,* сформулировавшим в 1852 г. следующее правило: длина вол­ны люминесцентного излучения всегда больше длины волны света, возбудившего его (рис. 326). Согласно квантовой теории, правило Стокса означает, что энергия hn падающего фотона частично расходуется на какие-то неоптические процессы, т. е.

откуда n люм <n или l люм >l что и следует из сформулированного правила.

* Дж. Стокс (1819—1903) — английский физик и математик.

 

Основной энергетической характеристикой люминесценции является энергетический выход, введенный С. И. Вавиловым в 1924 г., — отношение энергии, излученной люминофором при полном высвечивании, к энергии, поглощенной им. Типичная для органических люминофоров (на примере раствора флуоресцина) зависимость энергетического выхода h от длины волны l возбуждающего света представлена на рис. 327. Из рисунка следует, что вначале h растет пропорционально l, а затем, достигая максимального значения, быстро спадает до нуля при дальнейшем уве­личении l (закон Вавилова). Величина энергетического выхода для различных лю­минофоров колеблется в довольно широких пределах, максимальное ее значение может достигать примерно 80%.

Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров. На примере кристаллофосфоров рассмотрим механизмы возникновения люминесценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активато­ра (рис. 328). При поглощении атомом активатора фотона с энергией hn электрон с примесного уровня переводится в зону проводимости, свободно перемещается по кристаллу до тех пор, пока не встретится с ионом активатора и не рекомбинирует с ним, перейдя вновь на примесный уровень. Рекомбинация сопровождается излучени­ем кванта люминесцентного свечения. Время высвечивания люминофора определяется временем жизни возбужденного состояния атомов активатора, которое обычно не превышает миллиардных долей секунды. Поэтому свечение является кратковременным и исчезает почти вслед за прекращением облучения.

Для возникновения длительного свечения (фосфоресценции) кристаллофосфор должен содержать также центры захвата, или ловушки для электронов, представ­ляющие собой незаполненные локальные уровни (например, Л1 и Л2), лежащие вблизи дна зоны проводимости (рис. 329). Они могут быть образованы атомами примесей, атомами в междоузлиях и т. д. Под действием света атомы активатора возбуждаются, т. е. электроны с примесного уровня переходят в зону проводимости и становятся свободными. Однако они захватываются ловушками, в результате чего теряют свою подвижность, а следовательно, и способность рекомбинировать с ионом активатора. Освобождение электрона из ловушки требует затраты определенной энергии, которую электроны могут получить, например, от тепловых колебаний решетки. Освобожден­ный из ловушки электрон попадает в зону проводимости и движется по кристаллу до тех пор, пока или не будет снова захвачен ловушкой, или не рекомбинирует с ионом активатора. В последнем случае возникает квант люминесцентного излучения. Длите­льность этого процесса определяется временем пребывания электронов в ловушках.

Явление люминесценции получило широкое применение в практике, например люминесцентный анализ — метод определения состава вещества по характерному его свечению. Этот метод, являясь весьма чувствительным (примерно 10–10 г / см3), позво­ляет обнаруживать наличие ничтожных примесей и применяется при тончайших ис­следованиях в биологии, медицине, пищевой промышленностии т. д. Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин и других изделий (исследуемая поверхность покрывается для этого люминес­центным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов (см. § 233) и сцинтилляторов (будут рассмотрены ниже), применяются в электронно-оптических преобразователях (см. § 169), для созда­ния аварийного и маскировочного освещения и для изготовления светящихся указа­телей различных приборов.

§ 246. Контакт двух металлов по зонной теории

Если два различных металла привести в соприкосновение, то между ними возникает разность потенциалов, называемая контактной разностью потенциалов. Итальянский физик А. Вольта (1745—1827) установил, что если металлы А1, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd привести в контакт в указанной последовательности, то каждый предыдущий при соприкосновении с одним из следующих зарядится положительно. Этот ряд называется рядом Вольта. Контактная разность потенциалов для различных металлов составляет от десятых до целых вольт.

Вольта экспериментально установил два закона:

1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.

2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, воз­никающей при непосредственном соединении крайних проводников.

Для объяснения возникновения контактной разности потенциалов воспользуемся представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода А 1 и А 2, т.е. с различными положениями уровня Ферми (верхнего заполненного электронами энергетического уровня). Если A 1 <A 2 (этот случай изоб­ражен на рис. 330, а), то уровень Ферми располагается в металле 1 выше, чем в метал­ле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно. Одновременно проис­ходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицатель­но, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающи­мися металлами не установится равновесие, которое, как доказывается в статистичес­кой физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 330, б).

Так как для соприкасающихся металлов уровни Ферми совпадают, а работы выхода А 1 и A 2 не изменяются (они являются константами металлов и не зависят от того, находятся металлы в контакте или нет), то потенциальная энергия эле­ктронов в точках, лежащих вне металлов в непосредственной близости к их по­верхности (точки А и В на рис. 330, б), будет различной. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна

(246.1)

Разность потенциалов (246.1), обусловленная различием работ выхода контактиру­ющих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.

Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенци­алов, которая, как следует из рисунка, равна

(246.2)

В квантовой теории доказывается, что причиной возникновения внутренней кон­тактной разности потенциалов является различие концентраций электронов в контак­тирующих металлах. D j '' зависит от температуры T контакта металлов (поскольку наблюдается зависимость ЕF от T), обусловливая термоэлектрические явления. Как правило, D j ''<<D j '.

Если, например, привести в соприкосновение три разнородных проводника, име­ющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать (предоставляем это сделать читателю), не зависит от природы проме­жуточных проводников (второй закон Вольта).

Внутренняя контактная разность потенциалов возникает в двойном электрическом слое, образующемся в приконтактной области и называемом контактным слоем. Толщина контактного слоя в металлах составляет примерно 10–10 м, т. е. соизмерима с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный спой, составляет примерно 2% от общего числа электро­нов, находящихся на поверхности металла. Столь незначительное изменение концент­рации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина — с другой, не могут привести к замет­ному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т.е. контактный слой проводит электрический ток в обоих направлениях (1 ® 2 и 2 ® 1) одинаково и не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.

§ 247. Термоэлектрические явления и их применение

Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.0

1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных провод­ников, контакты между которыми имеют различную температуру, возникает элект­рический ток.

Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т 1 (контакт А) и Т 2 (контакт В), причем Т 1 > T 2 (рис. 331).

Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Сu, Аu—Сu) электродвижущая сила прямо пропор­циональна разности температур в контактах:

Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т 1 2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары метал­лов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.

Причина возникновения термоэлектродвижущей э.д.с. ясна уже из формулы (246.2), определяющей внутреннюю контактную разность потенциалов на границе двух металлов. Дело в том, что положение уровня Ферми зависит от температуры. Поэтому если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приво­дит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с.

Явление Зеебека не противоречит второму началу термодинамики, таккак в дан­ном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности тем­ператур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного — непрерывно ее отводить.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары —датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соедине­ния называются термобатареями (или термостолбиками). Термопары применяются как для измере­ния ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения тем­пературы с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает»0,01 К. Термопары обладают рядом преимуществ перед обычными термо­метрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.

Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к.п.д. полупроводниковых термобатарей достигает»18%. Следовательно, совер­шенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.

2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнару­жил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I ' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T 1 >T 2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I ' спай А будет нагреваться, спай В — охлаждаться.

Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной—кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир­ными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недоста­ющую энергию у кристаллической решетки, и спай будет охлаждаться.

Явление Пельтье используется в термоэлектрических полупроводниковых холо­дильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некото­рых электронных приборах.

3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохожде­нии тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

§ 248. Выпрямление на контакте металл — полупроводник

Рассмотрим некоторые особенности механизма процессов, происходящих при приведе­нии в контакт металла с полупроводником. Для этого возьмем полупроводник л-типа с работой выхода А, меньшей работы выхода А м из металла. Соответствующие энергетические диаграммы до и после приведения в контакт показаны на рис. 333, а, б.

Если А м , то при контакте электроны из полупроводника будут переходить в металл, в результате чего контактный слой полупроводника обеднится электронами и зарядится положительно, а металл — отрицательно. Этот процесс будет проис­ходить до достижения равновесного состояния, характеризуемого, как и при контакте двух металлов, выравниванием уровней Ферми для металла и полупроводника. На контакте образуется двойной электрический слой d, поле которого (контактная разность потенциалов) препятствует дальнейшему переходу электронов. Вследствие малой концентрации электронов проводимости в полупроводнике (порядка 1015 см–3 вместо 1021 см–3 в металлах) толщина контактного слоя в полупроводнике достигает пример­но 10–6 см, т. е. примерно в 10 000 раз больше, чем в металле. Контактный спой полупроводника обеднен основными носителями тока — электронами в зоне проводи­мости, и его сопротивление значительно больше, чем в остальном объеме полупровод­ника. Такой контактный слой называется запирающим.

При d= 10–6 см и D j»1 В напряженность электрического поля контактного слоя E= D j/d» 108 В/м. Такое контактное поле не может сильно повлиять на структуру спектра (например, на ширину запрещенной зоны, на энергию активации примесей и т. д.) и его действие сводится лишь к параллельному искривлению всех энергетичес­ких уровней полупроводника в области контакта (рис. 333, б). Так как в случае контакта уровни Ферми выравниваются, а работы выхода—величины постоянные, то при А м энергия электронов в контактном слое полупроводника больше, чем в остальном объеме. Поэтому в контактном слое дно зоны проводимости поднимается вверх, удаляясь от уровня Ферми. Соответственно происходит и искривление верхнего края валентной зоны, а также донорного уровня.

Помимо рассмотренного выше примера возможны еще следующие три случая контакта металла с примесными полупроводниками: a) А м < А, полупроводник п -типа; б) А м > А, полупроводник p -типа; в) А м < А, полупроводник р -типа. Соответствующие зонные схемы показаны на рис. 334.

Если А м <А, то при контакте металла с полупроводником п -типа электроны из металла переходят в полупроводник и образуют в контактном слое полупроводника отрицательный объемный заряд (рис. 334, а). Следовательно, контактный слой полу­проводника обладает повышенной проводимостью, т.е. не является запирающим. Рассуждая аналогично, можно показать, что искривление энергетических уровней по сравнению с контактом металл — полупроводник п -типа (А м > А) происходит в обрат­ную сторону.

При контакте металла с полупроводником р -типа запирающий слой образуется при А м < А (рис. 334, в), так как в контактном слое полупроводника наблюдается избыток отрицательных ионов акцепторных примесей и недостаток основных носителей то­ка—дырок в валентной зоне. Если же А м > А (рис. 334, б), то в контактном слое полупроводника р- типа наблюдается избыток основных носителей тока — дырок в ва­лентной зоне, контактный слой обладает повышенной проводимостью.

Исходя из приведенных рассуждений, видим, что запирающий контактный сдой возникает при контакте донорного полупроводника с меньшей работой выхода, чем у металла (см. рис. 333, б), и у акцепторного — с большей работой выхода, чем у металла (рис. 333, в).

Запирающий контактный слой обладает односторонней (вентильной) проводимо­стью, т. е. при приложении к контакту внешнего электрического поля он пропускает ток практически только в одном направлении: либо из металла в полупроводник, либо из полупроводника в металл. Это важнейшее свойство запирающего слоя объясняется зависимостью его сопротивления от направления внешнего поля.

Если направления внешнего и контактного полей противоположны, то основные носители тока втягиваются в контактный слой из объема полупроводника; толщина контактного слоя, обедненного основными носителями тока, и его сопротивление уменьшаются. В этом направлении, называемом пропускным, электрический ток может проходить через контакт металл — полупроводник. Если внешнее поле совпадает по знаку с контактным, то основные носители тока будут перемещаться от границы с металлом; толщина обедненного слоя возрастает, возрастает и его сопротивление. Очевидно, что в этом случае ток через контакт отсутствует, выпрямитель заперт — это запорное направление. Для запирающего слоя на границе металла с полупроводником n -типа (A м> А)пропускным является направление тока из металла в полупроводник, а для запирающего слоя на границе металла с полупроводником р- типа(A м< А) — из полупроводника в металл.

§ 249. Контакт электронного и дырочного полупроводников (p-n -переход)

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или p - n -переходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. p - n -Переход нельзя осущест­вить просто механическим соединением двух полупроводников. Обычно области раз­личной проводимости создают либо при выращивании кристаллов, либо при соответ­ствующей обработке кристаллов. Например, на кристалл германия n -типа накладыва­ется индиевая «таблетка» (рис. 335, а). Эта система нагревается примерно при 500°С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содер­жащий индий, обладает дырочной проводимостью, то на границе закристаллизовав­шегося расплава и германия n -типа образуется p - n -переход (рис. 335, б).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.)