|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Тангенциальная составляющая ускорения 19 страницаНа заряд Q 0 помимо сторонних сил действуют также силы электростатического поля F e= Q 0 E. Таким образом, результирующая сила, действующая в цепи на заряд Q 0, равна Работа, совершаемая результирующей силой над зарядом Q 0 на участке 1 — 2, равна Используя выражения (97.3) и (84.8), можем записать (97.4) Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае Напряжением U на участке 1 — 2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4), Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют. § 98. Закон Ома. Сопротивление проводников Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника: (98.1) где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S: (98.2) где r — коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10–8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью. Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим (98.3) где величина, обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U / l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (98.3) можно записать в виде (98.4) Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде (98.5) Выражение (98.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей. Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом: где r и r 0, R и R 0 — соответственно удельные сопротивления и сопротивления проводника при t и 0°С, a — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температурная зависимость сопротивления может быть представлена в виде где Т — термодинамическая температура. Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К. На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин. § 99. Работа и мощность тока. Закон Джоуля — Ленца Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время d t через сечение проводника переносится заряд d q=I d t. Так как ток представляет собой перемещение заряда d q под действием электрического поля, то, по формуле (84.6), работа тока (99.1) Если сопротивление проводника R, то, используя законОма (98.1), получим (99.2) Из (99.1) и (99.2) следует, что мощность тока (99.3) Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×103 Дж; 1 кВт×ч=103 Вт×ч= 3,6×106 Дж. Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии, (99.4) Таким образом, используя выражения (99.4), (99.1) и (99.2), получим (99.5) Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.* * Э. X. Ленц (1804—1865) — русский физик.
Выделим в проводнике элементарный цилиндрический объем d V= d S d l (ось цилиндра совпадает с направлением тока), сопротивление которого По закону Джоуля — Ленца, за время d t в этом объеме выделится теплота Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна (99.6) Используя дифференциальную форму законаОма (j=gЕ) и соотношение r= 1 /g, получим (99.7) Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника. Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагревательных приборов и т. д. § 100. Закон Ома для неоднородного участка цепи Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1 — 2 обозначим через а приложенную на концах участка разность потенциалов — через j 1 —j 2. Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1 — 2, согласно (97.4), (100.1) Э.д.с. как и сила тока I, — величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1—2), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0. За время t в проводнике выделяется теплота (см. (99.5)) (100.2) Из формул (100.1) и (100.2) получим (100.3) откуда (100.4) Выражение (100.3) или (100.4) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома. Если на данном участке цепи источник тока отсутствует ( =0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1): (при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов (см. § 97)). Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, j 1= j 2; тогда из (100.4) получаем закон Ома для замкнутой цепи: где - э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R 1, где r — внутреннее сопротивление источника тока, R 1 — сопротивление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (100.4) получим, что =j 1 —j 2, т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи. § 101. Правила Кирхгофа для разветвленных цепей Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников тока и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа. * *Г. Кирхгоф (1824—1887) — немецкий физик.
Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла, — отрицательным. Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю: Например, для рис. 148 первое правило Кирхгофа запишется так: Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными. Второе правило Кирхгофа получается из обобщенного закона Ома для разветвленных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать: Складывая почленно эти уравнения, получим (101.1) Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с., встречающихся в этом контуре: (101.2) При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо: 1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному. 2. Выбрать направление обхода контура и строго его придерживаться; произведение IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются положительными, против — отрицательными. 3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных. В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измерительного моста Уитстона. * Сопротивления R 1, R 2, R 3и R 4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG. Для узлов А, В и С, применяя первое правило Кирхгофа, получим (101.3) Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать: (101.4) * Ч. Уитстон (1802—1875) — английский физик. Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R 2, R 3 и R 4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем (101.5) а из (101.4) получим (101.6) Из (101.5) и (101.6) вытекает, что (101.7) Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R 1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют. На практике обычно используется реохордный мост Уитстона (рис. 151), где сопротивления R 3и R 4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R 3 /R 4 можно заменить отношением l 3/ l 4. Тогда, используя выражение (101.7), можно записать (101.8) Длины l 3 и l 4 легко измеряются по шкале, a R 2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R 1. Задачи 12.1. По медному проводнику сечением 1 мм2 течет ток; сила тока 1 А. Определить среднюю скорость упорядоченного движения электронов вдоль проводника, предполагая, что на каждый атом меди приходится один свободный электрон. Плотность меди 8,9 г/см3. [74 мкм/с] 12.2. Определить, во сколько раз возрастет сила тока, проходящего через платиновую печь, если при постоянном напряжении на зажимах ее температура повышается от t 1=20°C до t 2=1200°С. Температурный коэффициент сопротивления платины принять равным 3,65×10–3 К–1. [В 5 раз] 12.3. По медному проводу сечением 0,3 мм2 течет ток 0,3 А. Определить силу, действующую на отдельные свободные электроны со стороны электрического поля. Удельное сопротивление меди 17 нОм×м. [2,72×10–21 Н] 12.4. Сила тока в проводнике сопротивлением 10 Ом равномерно убывает от I 0=3 А до I =0 за 30 с. Определить выделившееся за это время в проводнике количество теплоты. [900 Дж]. 12.5. Плотность электрического тока в алюминиевом проводе равна 5 А/см2. Определить удельную тепловую мощность тока, если удельное сопротивление алюминия 26 нОм×м. [66 Дж/(м3×с)] 12.6. Определить внутреннее сопротивление r источника тока, если во внешней цепи при силе тока I 1=5 А выделяется мощность P 1=10 Вт, а при силе тока I 2=8 А — мощность P 2=12 Вт. [0,17 Ом] 12.7. Три источника тока с э.д.с. E 1=1,8 В, E 2=1,4 В и E 3=1,1 В соединены накоротко одноименными полюсами. Внутреннее сопротивление первого источника r 1=0,4 Ом, второго — r 2=0,6 Ом. Определить внутреннее сопротивление третьего источника, если через первый источник идет ток I 1=1,13 A. [0,2 Ом] Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории. Первый из таких опытов — опыт Рикке * (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны. *К. Рикке (1845—1915) — немецкий физик.
Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед,как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны. Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа. Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов которая для T =300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока. При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость á v ñ упорядоченного движения электронов можно оценить согласно формуле (96.1) для плотности тока: j = пe á v ñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концентрации носителей тока n = 8×1028м–3 средняя скорость á v ñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, á v ñ<<á u ñ, т. е. даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обусловливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость á v ñ + á u ñ можно заменять скоростью теплового движения á u ñ. Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c =3×108м/с). Через время t = l / c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием. § 103. Вывод основных законов электрического тока в классической теории электропроводности металлов 1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E =const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.) |