АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Билет №6

Читайте также:
  1. Билет 1
  2. БИЛЕТ 1
  3. Билет 1
  4. БИЛЕТ 1
  5. Билет 1
  6. Билет 1
  7. Билет 1
  8. Билет 1
  9. Билет 1 Восточные славяне. Расселение, основные занятия, религия. Военная демократия.
  10. Билет 1. Предмет истории как науки: цели и задачи ее изучения
  11. Билет 1.(12)
  12. Билет 10

Потенциал электрического поля. Связь напряжённости и потенциала. Пример.

Электростатический потенциал - скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.

Единицей измерения потенциала в Международной системе единиц (СИ) является вольт

1В = 1Дж/Кл.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

 

 

Напряжённость электростатического поля и потенциал связаны соотношением:

 

или обратно:

Где — оператор набла.

 

 

В прямоугольных декартовых координатах это равенство расписывается как

 

 

Пример: Поле заряда, равномерно распределённого по поверхности сферы радиуса R с поверхностной плоскостью

 

 

Система зарядов и, следовательно, само поле центрально-симметричны относительно центра О сферы. Вектор напряжённости поля имеет только радиальную составляющую

,

 

где - радиус-вектор, проведённый из центра О сферы в рассматриваемую точку поля; - проекция вектора Е на радиус-вектор, одинаковая во всех точках, равноудалённых от центра О. Поэтому за гауссову поверхность S следует взять сферу радиуса r с центром в точке О. Тогда

 

Если r R, то qохв=q и по теореме Остроградского-Гаусса

 

Если r<R, то qохв=0 и Er=0, т.е. внутри заряженной сферы поля нет.

 

Потенциал поля найдём из формулы связи между потенциалом и напряжённостью поля:

Полагая, что, получаем, что потенциал поля вне сферы равен:

 

Из этих формул видно, что вне заряженной сферы радиуса R поле такое же, как поле точечного заряда q, находящегося в центре сферы. Внутри заряженной сферы поля нет, так что потенциал всюду одинаков и такой же, как на её поверхности:

 

Графики зависимостей Er и от r для случая, когда

 

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)