АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определители. Определителем (детерминантом) n-го порядка называется числовая характеристика квадратной матрицы A размера

Читайте также:
  1. V2: ДЕ 6 - Линейные отображения. Определители второго порядка
  2. Вопрос: Действия с матрицами. Определители второго и третьего порядка.
  3. Вычислить определители.
  4. Матрицы и определители
  5. Определители
  6. Определители
  7. ОПРЕДЕЛИТЕЛИ
  8. Определители
  9. Определители
  10. Определители 2-го и 3-го порядков, их вычисление и свойства
  11. Определители 2-го порядка, системы 2-х линейных уравнений с двумя неизвестными.

 

Определителем (детерминантом) n -го порядка называется числовая характеристика квадратной матрицы A размера , вычисляемая по определенному правилу (см., например, ). Обозначается определитель одним из следующих символов: .

Определитель первого порядка – определитель для матрицы размера , состоящей из одного числа, – равен самому числу:

.

Для определителей второго и третьего порядков имеем:

; (1)

(2)

При вычислении определителя третьего порядка удобно пользоваться следующей схемой (схема Саррюса):

Рис. 2

Определитель равен алгебраической сумме произведений элементов, соединенных на рисунке одной непрерывной линией. Для определителей порядка выше третьего подобных простых схем не составлено, и для вычисления надо использовать упрощения, основанные на свойствах определителей.

Введем несколько важных понятий.

Минором определителя −го порядка называется определитель, полученный из данного вычеркиванием −ой строки и −го столбца.

В общем случае минором прямоугольной матрицы называется любой определитель, полученный из нее в результате вычеркивания каких-то строк или столбцов. В частности, сам определитель квадратной матрицы тоже является ее минором. Миноры выделены в силу их важности для приложений.

Алгебраическим дополнением к элементу определителя называется выражение

.

Для вычисления определителя −го порядка справедливы рекуррентные формулы через определители ()−го порядка:

(3)

. (4)

Формулы представляют разложение определителя: (3) − по элементам строки, (4) − по элементам столбца, и, в частности, показывают, что определитель не изменяется при перестановке строк со столбцами, т.е. определители исходной матрицы и транспонированной к ней равны.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)