АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем линейных уравнений методом Крамера. Рассмотрим систему трех линейных уравнений с тремя неизвестными:

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. ERP и CRM система OpenERP
  6. HMI/SCADA – создание графического интерфейса в SCADА-системе Trace Mode 6 (часть 1).
  7. I Понятие об информационных системах
  8. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  9. I. Основні риси політичної системи України
  10. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  11. I. Решение логических задач средствами алгебры логики
  12. I. Составление дифференциальных уравнений и определение передаточных функций

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

Здесь

– главный определитель системы, – вспомогательный определитель системы.

– два других вспомогательных определителя системы.

Формулы

называются – формулами Крамера.

Замечание:

1. Если , то система имеет единственное решение.

2. Если и хотя бы один из вспомогательных определителей отличен от нуля, то система не имеет решения.

3. Если и все вспомогательные определители равны нулю, то система имеет бесчисленное множество решений.

Формулы остаются справедливыми в случае системы п линейных уравнений с п неизвестными.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)