|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Определители второго и третьего порядковОдним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система (1) Если обе части первого уравнения умножить на , а второго – на и уравнения почленно вычесть, то получим Аналогично, если первое уравнение умножить на и вычесть из него второе уравнение, умноженное на , то получим Если ¹ 0, то х = у = . Выражения, стоящие в числителях и знаменателях полученных формул, имеют одинаковую структуру. Для их составления используется четыре числа. Если числа, используемые для знаменателя, записать в виде матрицы , то знаменатели получаются по правилу: из произведения элементов одной диагонали таблицы вычитается произведение элементов второй диагонали. Используя отмеченное правило, введём понятие определителя. Для матрицы диагональ, на которой стоят элементы , называется главной диагональю, вторая диагональ называется побочной диагональю. Определение 2. Определителем 2-го порядка (определителем матрицы ) называется число, равное разности произведения элементов главной диагонали и произведения элементов побочной диагонали. Определитель матрицы обозначается . Обозначим D = , D1 = , D2 = . Используя определение 2, получим, что система (1) имеет единственное решение тогда и только тогда, когда D ¹ 0. Это решение можно найти по формулам х = , у = (2). Эти формулы называются формулами Крамера. Пусть дана система трёх уравнений с тремя неизвестными: (3) Умножим первое уравнение на , второе уравнение – на , третье уравнение – на и почленно сложим. Получим х × = = . Легко заметить, что коэффициент при х и правая часть составлены из девяти чисел по одному и тому же закону. Пусть дана матрица А = . Определение 3. Определителем матрицы А (определителем третьего порядка) называется число, равное D = (4). Равенство (4) называется разложением определителя по элементам первого столбца. Итак, вычисление определителя третьего порядка сводится к вычислению определителей второго порядка. Если вычислить определители второго порядка, входящие в формулу (4), то получим, что (5). Используя последнюю формулу непосредственным вычислением можно получить: 1. Определитель не изменится, если в нём строки и столбцы поменять местами (эту операцию называют транспонированием определителя). Следовательно в определителе строки и столбцы равноправны.. 2. D = . Итак, определитель можно разлагать по любому столбцу. Можно заметить, что знак перед множителем равен . Так как в определителе строки и столбцы равноправны, то аналогичные разложения имеют место и по любой строке определителя (запишите их самостоятельно). 3. Если в определителе одна из строк (или столбцов) целиком состоит из нулей, то определитель равен нулю. 4. Системы (3) имеет единственное решение тогда и только тогда, когда D ¹ 0. Это решение можно найти по формулам: х = , у = , (6), где D1, D2, D3 получаются из определителя D заменой первого, второго, третьего столбца соответственно столбцом свободных членов. Формулы (6) тоже называются формулами Крамера. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |