|
||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Собственные векторы и собственные значения линейного преобразованияПусть L n – линейное n-мерное пространство над полем Р, j: L n ® Ln – линейное преобразование и А –матрица этого преобразования в некотором базисе е. Определение 40. Ненулевой вектор а называется собственным вектором преобразования j, если j (а) = l× а для некоторого l Î Р. Элемент l называется собственным значением преобразования j. По определению собственного вектора, а – собственный вектор преобразования j Û $ l Î Р: j (а) = l× а. Перепишем это равенство в координатах, получим А× х = l× х. Отсюда А× х – (lЕ) × х = О, или (А –lЕ)× х = О. Итак, а – собственный вектор преобразования j Û столбец координат этого вектора является ненулевым решением уравнения (А –lЕ)× х = О (37). Матрица (А –lЕ) называется характеристической матрицей для матрицы А. Матричное уравнение (37) перепишем в виде системы уравнений. Получим, что а – собственный вектор
Корни характеристического многочлена называются характеристическими корнями матрицы А. (Характеристический корень не всегда принадлежит полю Р). Множество всех характеристических корней матрицы А называется её спектром. Согласно определению 40, l Î Р. Пусть l0 Î Р и является характеристическим корнем матрицы А. При l0 система (38) имеет ненулевое решение, т. е. j будет иметь собственный вектор и l0 будет собственным значением преобразования j, заданного матрицей А. Теорема 37. Характеристические многочлены подобных матриц одинаковы. Доказательство. Пусть В = С–1×А×С. Так как матрица lЕ перестановочна с любой матрицей, то | В – lЕ | = | С–1×А×С – lЕ | = | С–1×А×С – С–1 × (lЕ)× С | = | С–1× (А – lЕ)× С | = | С–1 || А – lЕ || С | = | А – lЕ |. Так как матрицы линейного преобразования в разных базисах подобна, то Следствие. Матрицы линейного преобразования в разных базисах имеют один и тот же спектр. Определение 41. Спектр матрицы линейного преобразования в каком-нибудь базисе называется спектром линейного преобразования. Теорема 38. Собственными значениями линейного преобразования j: L n ® Ln, действующего в линейном пространстве над полем Р, являются характеристические корни этого преобразования, принадлежащие полю Р, и только они. Доказательство этой теоремы вытекает из всего сказанного выше. Можно сформулировать следующие правила нахождения собственных значений и собственных векторов линейного преобразования. 1. Записать матрицу данного преобразования в некотором базисе. 2. Составить характеристическое уравнение и найти его корни, принадлежащие полю Р (т.е. найти собственные значения). 3. Если l0 – собственное значение, то составить систему и найти её ненулевые решения. Пример. Найти собственные значения и собственные векторы линейного преобразования j: L4 ® L4 (над полем R), если это преобразование в базисе е = (е 1, е2, е3, е4) имеет матрицу А.
, [(1 – l)2 – 1]×[(1– l)×(3 – l) – 6] = 0. Возможны два случая: 1) (1 – l)2 – 1 = 0, 1 – l = ± 1. Отсюда l1 = 0, l2 = 2. 2) (1– l)×(3 – l) – 6 = 0, l2 – 4 l – 3 = 0, l3 = , l4 = . Итак, характеристическое уравнение имеет четыре корня, все они действительные. Поэтому данное преобразование имеет четыре собственных значения. Для каждого из них составим систему уравнений для нахождения собственных векторов.
Решив последнюю систему, получим х4 = , х3 = . Если х1 = 3 С, то х2 = –3 С, х3 = 13 С, х4 = – 11 С, С – любое действительное число, отличное от нуля. Итак, собственными векторами, принадлежащими собственному значению l = 0, являются все ненулевые векторы вида (3 С, – 3 С, 13 С, –11 С).
Решив последнюю систему, получим х3 = , х4 = Если х1 = 7 С, то х2 = 7 С, х3 = –15 С, х4 = –11 С, где С – любое отличное от нуля действительное число. Итак, собственными векторами, принадлежащими собственному значению l = 2, являются все ненулевые векторы вида (7 С, 7 С, –15 С, –11 С).
Свойства собственных векторов. 10. Если вектор а – собственный вектор преобразования j, принадлежащий собственному значению l и a ¹ 0, то a× а – тоже собственный вектор, принадлежащий тому же собственному значению. Если j (а) = l а, то j (a а) = aj (а) = a (l а) = l (a а). 20. Множество всех собственных векторов линейного преобразования j: Ln ® Ln, принадлежащих одному и тому же собственному значению (если к ним добавить нулевой вектор), есть линейное подпространство в Ln. Пусть а и в два собственных вектора и j (а) = l а, j (в) = l в. Тогда j (a а + b в) = aj (а) + bj (в) = a (l а) + b (l в) = l (a а + b в). 30. Собственные векторы, принадлежащие различным собственным значениям, линейно независимы. Пусть j (а) = l а, j (в) = l1 в, l ¹ l1. Если бы а и в были бы линейно зависимы, то хотя бы один из них линейно выражался через другой пусть в = a а. Так как в – собственный вектор, то a ¹ 0. Тогда j (в) = j (a а). Отсюда l1 в = a(l а), l1(a а) = a(l а), a (l1 – l) а = 0. Но в левой части a ¹ 0, l1 – l ¹ 0, а ¹ 0. Противоречие. Следовательно, а и в – линейно независимы. 40. Если в базисе е = (е1, е2,..., ек, …, еn) вектор ек – собственный вектор линейного преобразования j, принадлежащий собственному значению l, то в к -ом столбце матрицы этого преобразования на всех местах, кроме к -го, стоят нули и акк = l.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |