АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Связь решений однородной и неоднородной систем линейных уравнений

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. ERP и CRM система OpenERP
  6. HMI/SCADA – создание графического интерфейса в SCADА-системе Trace Mode 6 (часть 1).
  7. I Понятие об информационных системах
  8. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  9. I. Основні риси політичної системи України
  10. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  11. I. Составление дифференциальных уравнений и определение передаточных функций
  12. I. Суспільство як соціальна система.

 

Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля Р. Если в этой системе все свободные члены заменить нулями, то полученная система линейных однородных уравнений называется соответствующей однородной системой (это система (30)). Решения систем (25) и (30)

(30) удовлетворяют следующим свойствам: 10. Сумма решений данной неоднородной и соответствующей однородной системы линейных уравнений есть решение данной неоднородной системы. Пусть а – частное решение системы (25) и с – частное решение системы (30). Рассмотрим вектор (а + с).

Системы (25) и (30) в векторной форме имеют вид А× х = в (31) и А× х = 0 (32). По условию А× а = в, А× с = 0. Следовательно, А× (а + с) = А× а + А× с = в + 0 = в. Следовательно, (а + с) – решение уравнения (31), а поэтому и системы (25).

20. Разность двух решений неоднородной системы линейных уравнений есть решение соответствующей однородной системы.

Пусть а и с решения системы (25), а следовательно, и уравнения (31), т.е. А× а = в и А× с = в. Тогда А× (а – с) = А× аА× с = в – в = 0, т.е. (а – с) – решение уравнения (32), а поэтому и системы (30).

30. Если а – фиксированное частное решение системы (25), а с пробегает все решения системы (30), то (а + с) пробегает все решения системы (25).

Согласно 10, при любом с вектор (а + с) будет решением системы (25). Если d – любое решение системы (25), то, согласно 20, разность (dа) будет решением системы (30). Обозначив (dа) = с, получим d = (а + с).

Теорема 29. Если а – частное решение линейной неоднородной системы уравнений и а1, а2, …, аn–r – фундаментальная система решений соответствующей однородной системы уравнений, то общее решение данной неоднородной системы имеет вид

d = а + С1 а1 + С2 а2 + … + Сn–r аn–r, где С1, С2, …, Сn–r – любые элементы поля Р.

(Иными словами, общее решение системы линейных неоднородных уравнений равно сумме частного решения этой системы и общего решения соответствующей однородной системы.)

Доказательство является следствием предыдущих свойств.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)