|
|||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Автокорреляция ошибок
Если матрица ковариаций ошибок не является диагональной, то говорят об ав- токорреляции ошибок. Обычно при этом предполагают, что наблюдения однород- ны по дисперсии, и их последовательность имеет определенный смысл и жестко фиксирована. Как правило, такая ситуация имеет место, если наблюдения про- водятся в последовательные моменты времени. В этом случае можно говорить о зависимостях ошибок по наблюдениям, отстоящим друг от друга на 1, 2, 3 и т.д. момента времени. Обычно рассматривается частный случай автокорреляции, когда коэффициенты ковариации ошибок зависят только от расстояния во времени меж- ду наблюдениями; тогда возникает матрица ковариаций, в которой все элементы каждой диагонали (не только главной) одинаковы1. Поскольку действие причин, обуславливающих возникновение ошибок, доста- точно устойчиво во времени, автокорреляции ошибок, как правило, положительны. Это ведет к тому, что значения остаточной дисперсии, полученные по стандартным («штатным») формулам, оказываются ниже их действительных значений. Что, как отмечалось и в предыдущем пункте, чревато ошибочными выводами о качестве получаемых моделей.
Это утверждение иллюстрируется рисунком 8.4 (n = 1). На этом рисунке: a — линия истинной регрессии. Если в первый момент времени истинная ошибка отрицательна, то в силу положительной автокорреляции ошибок все облако наблю- дений сместится вниз, и линия оцененной регрессии займет положение b. Если в первый момент времени истинная ошибка положительна, то по тем же причи- нам линия оцененной регрессии сместится вверх и займет положение c. Поскольку 1 В теории временных рядов это называется слабой стационарностью.
x c
A b
Время
Рис. 8.4
266 Глава 8. Нарушение гипотез основной линейной модели
ошибки случайны и в первый момент времени они примерно с равной вероятно- стью могут оказаться положительными или отрицательными, то становится ясно, насколько увеличивается разброс оценок регрессии вокруг истинных по сравнению с ситуацией без (положительной) автокорреляции ошибок.
Типичный случай автокорреляции ошибок, рассматриваемый в классической эконометрии, — это линейная авторегрессия ошибок первого порядка AR(1):
ε i = ρε i −1+ η i, где η — остатки, удовлетворяющие обычным гипотезам; ρ — коэффициент авторегрессии первого порядка. Коэффициент ρ вляется также коэффициентом автокорреляции (первого по- рядка).
Действительно, по определению, коэффициент авторегрессии равен (как МНК- оценка): cov (ε i, ε i −1) ρ= var (ε , i −1) но, в силу гомоскедастичности, var (ε i −1) =, var (ε i) var (ε i −1) и, следовательно, ρ, также по определению, является коэффициентом автокорреляции.
Если ρ = 0, то ε i = η i и получаем «штатную» ситуацию. Таким образом, проверку того, что автокорреляция отсутствует, можно проводить как проверку нулевой гипотезы H 0: ρ = 0 для процесса авторегрессии 1-го порядка в ошибках. Для проверки этой гипотезы можно использовать критерий Дарбина— Уотсона или DW-критерий. Проверяется нулевая гипотеза о том, что автокорре- ляция ошибок первого порядка отсутствует. (При автокорреляции второго и более высоких порядков его мощность может быть мала, и применение данного критерия становится ненадежным.) Пусть была оценена модель регрессии и найдены остатки ei, i = 1 ,..., N. Значение статистики Дарбина—Уотсона (отношения фон Неймана), или DW -ста- тистики, рассчитывается следующим образом:
N (ei − ei −1) dc = i =2 N
i
. (8.3) i =1
Оно лежит в интервале от 0 до 4, в случае отсутствия автокорреляции ошибок приблизительно равно 2, при положительной автокорреляции смещается в мень-
8.3. Автокорреляция ошибок 267
0 2 DL dU
DU
DL
Рис. 8.5
шую сторону, при отрицательной — в большую сторону. Эти факты подтвержда- ются тем, что при больших N справедливо следующее соотношение: dc ≈ 2(1 − r), (8.4) где r — оценка коэффициента авторегрессии.
Минимального значения величина dc достигает, если коэффициент авторегрессии равен +1. В этом случае ei = e, i = 1 ,..., N, и dc = 0. Если коэффициент авторегрессии равен −1 и ei = (−1) ie, i = 1 ,..., N, то величина dc достигает значения 4 N − 1 N (можно достичь и более высокого значения подбором остатков), которое с ростом N стремится к 4. Формула (8.4) следует непосредственно из (8.3) после элементарных преобразований:
N N
N
i −1 dc = i =2 − 2 i =2 + i =2, N
i i =1 N
i i =1 N
i i =1 поскольку первое и третье слагаемые при больших N близки к единице, а второе слагаемое является оценкой коэффициента автокорреляции (умноженной на −2).
Известно распределение величины d, если ρ = 0 (это распределение близко к нормальному), но параметры этого распределения зависят не только от N и n, как для t - и F -статистик при нулевых гипотезах. Положение «колокола» функции плотности распределения этой величины зависит от характера Z. Тем не менее, Дарбин и Уотсон показали, что это положение имеет две крайние позиции (рис. 8.5). Поэтому существует по два значения для каждого (двустороннего) квантиля, соответствующего определенным N и n: его нижняя dL и верхняя dU границы. Нулевая гипотеза H 0: ρ = 0 принимается, если dU ™ dc ™ 4 − dU; она отвергается в пользу гипотезы о положительной автокорреляции, если dc < dL, и в пользу
268 Глава 8. Нарушение гипотез основной линейной модели
гипотезы об отрицательной автокорреляции, если dc> 4 − dL. Если dL ™ dc< dU или 4− dU< dc ™ 4− dL, вопрос остается открытым (это — зона неопределенности DW -критерия). Пусть нулевая гипотеза отвергнута. Тогда необходимо дать оценку матрицы Ω. Оценка r параметра авторегрессии ρ может определяться из приближенного равенства, следующего из (8. 4): dc r ≈ 1 − 2,
или рассчитываться непосредственно из регрессии e на него самого со сдвигом на одно наблюдение с принятием «круговой» гипотезы, которая заключается в том, что eN +1 = e 1. Оценкой матрицы Ω является
··· r N −1 r 1 r ··· rN −2
r 1 ··· r
... ... ... ..
rN −1 rN −2 rN −3 ··· 1 а матрица D преобразований в пространстве наблюдений равна
√
... ..
0 0 0 ··· 1
Для преобразования в пространстве наблюдений, называемом в данном слу- чае авторегрессионным, используют обычно указанную матрицу без 1-й строки, что ведет к сокращению количества наблюдений на одно. В результате такого пре- образования из каждого наблюдения, начиная со 2-го, вычитается предыдущее, умноженное на r, теоретическими остатками становятся η, которые, по предпо- ложению, удовлетворяют гипотезе g4.
8.3. Автокорреляция ошибок 269
После этого преобразования снова оцениваются параметры регрессии. Если новое значение DW -статистики неудовлетворительно, то можно провести следую- щее авторегрессионное преобразование. Обобщает процедуру последовательных авторегрессионных преобразований метод Кочрена—Оркатта, который заключается в следующем. Для одновременной оценки r, a и b используется критерий ОМНК (в обозна- чениях исходной формы уравнения регрессии): 1 N
→ min, Ni =2 где zi — n -вектор-строка значений независимых факторов в i -м наблюдении (i -строка матрицы Z). Поскольку производные функционала по искомым величинам нелинейны от- носительно них, применяется итеративная процедура, на каждом шаге которой сначала оцениваются a и b при фиксированном значении r предыдущего шага (на первом шаге обычно r = 0), а затем — r при полученных значениях a и b. Процесс, как правило, сходится. Как и в случае гетероскедастичности, можно не использовать модифицированные методы оценивания (тем более, что точный вид автокорреляции может быть неиз- вестен), а использовать обычный МНК и скорректировать оценку ковариационной матрицы параметров. Наиболее часто используемая оценка Ньюи—Уэста (устой- чивая к гетероскедастичности и автокорреляции) имеет следующий вид: (Z r Z)−1 Q (Z r Z)−1, где
N L N Q = e 2 + λ keiei k (z z r + zi k z r), i i =1
k =1 i = k +1 − i i − k − i а λ k — понижающие коэффициенты, которые Ньюи и Уэст предложили рассчи- k. При k > L понижающие коэффициенты тывать по формуле λ k = 1 − L +1 становятся равными нулю, т.е. более дальние корреляции не учитываются Обоснование этой оценки достаточно сложно2. Заметим только, что если заменить попарные произведения остатков соответствующими ковариациями и убрать пони- жающие коэффициенты, то получится формула ковариационной матрицы оценок МНК. Приведенная оценка зависит от выбора параметра отсечения L. В настоящее вре- мя не существует простых теоретически обоснованных методов для такого выбора. На практике можно ориентироваться на грубое правило L = .
2/9. .
2 Оно связано с оценкой спектральной плотности для многомерного временного ряда.
270 Глава 8. Нарушение гипотез основной линейной модели
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.02 сек.) |