АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Внешняя прямая сумма
Пусть U и W — векторные пространства над полем F.
Определение. Прямой суммой векторных пространств U и W называется декартово произведение V=U×W с операциями сложения векторов и умножения их на скаляр, определенными следующей формулой:
Замечание. Определенная таким образом прямая сумма называется внешней. Непосредственной проверкой можно убедиться, что внешняя прямая сумма векторных пространств является векторным пространством.
Предположим, внешняя прямая сумма пространств U и W обладает следующим свойством: если и — линейные отображения, определенные условиями то является внутренней прямой суммой подпространств . Таким образом,
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Поиск по сайту:
|