АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Малюнок № 6.4

Читайте также:
  1. Малюнок 1 Вікно Конструктора форм
  2. Малюнок 11.3.
  3. Малюнок 11.7.
  4. Малюнок 8.4.
  5. Малюнок 8.5.
  6. Малюнок № 1.
  7. Малюнок № 1.1.
  8. Малюнок № 10.1.
  9. Малюнок № 10.3.
  10. Малюнок № 11.10.
  11. Малюнок № 11.4.
  12. Малюнок № 11.8.

 

Якщо в загальному рівнянні прямої визначити у, то при В≠0 загальне рівняння прямої приймає вигляд . Якщо позначити - через , а через , то рівняння приймає вигляд , тобто матиме вигляд рівняння прямої з кутовим коефіцієнтом. Якщо , то рівняння буде мати вигляд Ах+С=0 або х=а, тобто має рівняння прямої, паралельної осі ординат. Якщо А=0, то маємо рівняння Вх+С=0 або у=b, тобто рівняння прямої, паралельної осі абсцис.

Запишемо умови паралельності і перпендикулярності прямих, заданих своїми загальними рівняннями. Нехай маємо дві прямі та . Якщо і , то , . Виходячи із умови паралельності прямих , маємо або –a1b2=-a2b1. Тоді умова паралельності запишеться так: a1b2-a2b1=0. Оскільки умова перпендикулярності прямих має вигляд k1k2=-1, то для прямих, які задані загальними рівняннями прямої, умова перпендикулярності матиме вигляд a1а2+b1b2=0.

Нехай задано дві прямі та . Якщо ці прямі перетинаються, то координати точки перетину задовольняють обидва рівняння, а це означає, що для знаходження точки перетину двох прямих потрібно розв’язати систему рівнянь: . Пропонуємо студентам самостійно розв’язати наступні вправи, використовуючи виведені раніше формули.

Вправа 1: Знайти точку перетину прямих та .

Вправа 2: Як розміщені прямі на площині? та .

Вправа 3: Записати рівняння прямої, яка проходить через точки , .

Вправа 4: Знайти тангенс кута між прямими та .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)