АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доведення

Читайте также:
  1. АРГУМЕНТУВАННЯ
  2. Випадкові події. Класифікація подій
  3. Висновки
  4. Глава 20 РЕАЛІЗАЦІЯ НОРМ ПРАВА. ПРАВОЗАСТОСУВАННЯ
  5. Дисперсія і середнє квадратичне відхилення.
  6. Доведення і спростування
  7. Досягнення
  8. Еквівалентність формальних моделей алгоритмів
  9. Законом великих чисел і центральною граничною теоремою.
  10. Історичні типи світогляду
  11. Її використання
  12. Ймовірність об’єднання несумісних подій

Для доведення теореми використаємо означення рівносильних нерівностей. Саме тому доведення складатиметься з двох частин. У першій слід показати, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ), а в другій – що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І). Нехай Т1ÌХ є множиною розв’язків нерівності (І), а Т2ÌХ є множиною істинності нерівності (ІІ). Виберемо довільне х0, яке належить множині Т1 і підставимо його у нерівність (І). Тоді вона перетвориться в істинну числову нерівність f(х0)>g(х0).

За умовою теореми вираз j(x) визначений при всіх хÎХ, а оскільки х0ÎТ1ÌХ, то підставивши його у вираз j(x), ми одержимо числовий вираз j(х0). Виконавши у цьому виразі відповідні дії, ми одержимо число. Оскільки f(х0)>g(х0) ‑ істинна числова нерівність, а j(х0) - числовий вираз, визначений для всіх хÎХ, то на основі властивостей істинних числових нерівностей нерівність f(х0)+j(х0)>g(х0)+j(х0) - буде істинною числовою нерівністю. Отже, х0 – розв’язок нерівності (ІІ).

Значення х0 в множині Т1 ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якого хєТ1. Істинну числову нерівність f(х0)+j(х0)>g(х0)+j(х0) ми можемо одержати із нерівності (ІІ), замінивши в ній х на х0, а це означає, що х0 є розв’язком нерівності (ІІ). Отже, наші міркування можна повторити для будь-якого х0єТ1. Це означає, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ), тобто Т1ÌТ2. Таким чином, першу частину теореми доведено.

У другій частині доведемо, що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І). Нехай Т1ÌХ є множиною розв’язків нерівності (І), а Т2ÌХ є множиною істинності нерівності (ІІ). Виберемо довільне у0, яке належить множині Т2 і підставимо його у нерівність (ІІ). Тоді вона перетвориться в істинну числову нерівність f(у0)+j(у0)>g(у0)+j(у0). За умовою теореми вираз j(x) визначений при всіх хÎХ, а оскільки у0ÎТ2ÌХ, то підставивши його у вираз j(x), ми одержимо числовий вираз j(у0). Виконавши у цьому виразі відповідні дії, ми одержимо число. Оскільки f(у0)+j(у0)>g(у0)+j(у0) ‑ істинна числова нерівність, а j(у0) - числовий вираз, визначений для всіх хÎХ, то на основі властивостей істинних числових нерівностей нерівність f(у0)>g(у0) буде істинною числовою нерівністю.

Значення у0 в множині Т2 ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якого хєТ2. Істинну числову нерівність f(у0)>g(у0) ми можемо одержати із нерівності (І), замінивши в ній х на у0, а це означає, що у0 є розв’язком нерівності (І). Отже, наші міркування можна повторити для будь-якого у0єТ2. Це означає, що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І), тобто Т2ÌТ1. Таким чином, другу частину теореми доведено. У першій частині ми довели, що Т1ÌТ2, а другій, що Т2ÌТ1. Тоді на основі означення рівності множин Т12. Це означає, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ). Таким чином, теорему доведено повністю, тобто нерівності (І) і (ІІ) рівносильні.

Теорема 2: якщо вираз j(х) визначений і набуває додатних значень при всіх хÎХ, то нерівність f(x)>g(x) (I) рівносильна нерівності f(x)·j(x)>g(x)·j(x) (III).

Доведення теореми 2 складатиметься з двох частин і проводиться аналогічно до доведення теореми 1 або теореми 3. Саме тому пропонуємо студентам довести цю теорему самостійно.

Теорема 3: Якщо вираз j(х) визначений і набуває від’ємних значень при всіх хÎХ, то нерівність f(x)>g(x) (I) рівносильна нерівності f(x)·j(x)<g(x)·j(x) (IV).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)