АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Необмежена двопровідна система

Читайте также:
  1. E согласно механизму сотрудничества с системами фермента.
  2. II. Богословская система
  3. III. Лексика как система (8 часов)
  4. SCADA как система диспетчерского управления
  5. SCADA система Citect
  6. SCADA-система: назначение и функции
  7. SCADA: требования к системам верхнего уровня
  8. Shelter (разработчик USC) – система управления отелем, гостиницей, домов отдыха, пансионатов, санаториев
  9. VІ. Узагальнення і систематизація знань. Практична робота
  10. аблица 10. Строение клетки. Структурная система цитоплазмы
  11. Абсорбционный чиллер предназначен для получения холодной воды, которая в последующем может использоваться в качестве хладагента в системах кондиционирования.
  12. АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ ЭНЕРГОРЕСУРСОВ

Розглянемо фізичну сутність процесів, що відбуваються в системі Лехера відповідно з [6]. Візьмемо до уваги, що поперечні розміри системи є досить малими порівняно з довжиною хвилі. Це означає, що вздовж поперечного напрямку електромагнітне поле можна вважати квазістаціонарним. У той самий час вважаємо, що проводи є довгими – на їх довжині повинно укладатися щонайменше кілька хвиль. Тому електричні струми в проводах не квазістаціонарні, сила струму ,а також лінійна густина електричного заряду істотно змінюються вздовж них (вісь X спрямована паралельно проводам). Унаслідок симетрії струм , що проходить вздовж одного з проводів, є рівним і протилежно спрямованим струму, що проходить навпроти нього вздовж іншого проводу (рис. 5.3.1, стрілками позначено напрямок електричних струмів у деякий момент часу). Аналогічно розміщуються й електричні заряди на проводах. Електричну напругу між проводами, виміряну вздовж перпендикуляра до них, будемо позначати через .

 

Рисунок 5.3.2 – До розрахунку напруги та струму в двопровідній системі

 

Розглянемо на одному з проводів системи Лехера нескінченно малий відрізок (рис. 5.3.2). Через точку А за час усередину розглянутого відрізку входить електричний заряд , а через точку D виходить заряд . Різниця заряду, що входить, над зарядом, що виходить, становить . Виходячи із закону збереження електричного заряду, ця величина дорівнює зміні заряду всередині розглянутого відрізку (нагадаємо, що тут – густина електричного заряду). Таким чином,

. (5.3.1)

Застосуємо тепер до контуру ADCBрівняння Максвелла:

, (5.3.2)

де магнітний потік[22]), що пронизує цей контур. Інтеграли на окремих відрізках контуру ADCB дорівнюють

, ,

,

, (5.3.3)

де сумарний опір елементів проводів AD і СВ. У співвідношеннях (5.3.3) – напруга між точками D та C, – напруга між точками B та A. Тоді з (5.3.2) та (5.3.3) отримуємо

. (5.3.4)

Нагадаємо, що величини , і – це заряд, магнітний потік і опір одиниці довжини двопровідної лінії. Далі припускаємо, що опір дорівнює нулю. Використаємо тепер умову квазістаціонарності для поперечних характеристик системи. Позначимо через , відповідно ємність та індуктивність одиниці довжини лінії. Цівеличини знайдемо зі співвідношень

, . (5.3.5)

Вилучивши з рівнянь (5.3.1), (5.3.4) і та враховуючи, що , отримаємо

, (5.3.6)

. (5.3.7)

Вилучивши із системи рівнянь (5.3.6), (5.3.7) або силу струму, або напругу, отримаємо відповідні хвильові рівняння

. (5.3.8)

Це означає, що вздовж двопровідної системи Лехера поширюється хвиля струму та напруги з фазовою швидкістю

. (5.3.9)

Для тонких циліндричних проводів радіусом , відстань між якими дорівнює , індуктивність та ємність дорівнюють

, . (5.3.10)

Підставляючи (5.3.10) до (5.3.9), отримуємо

, (5.3.11)

де – швидкість світла у вакуумі. Таким чином, фазова швидкість поширення хвиль струму, напруги у двопровідній лінії збігається зі швидкістю поширення електромагнітних хвиль у вільному просторі.

Вище ми не вводили ніяких припущень про форму коливань і хвиль у системі Лехера. Будемо вважати далі, що коливання і хвилі гармонічні. У випадку біжучої хвилі струм та напруга коливаються в однакових фазах. Це безпосередньо випливає зі співвідношень (5.3.6), (5.3.7). Змінні струм, напруга створюють змінні електричне та магнітне поля. Неважко з’ясувати, що в біжучій хвилі вектори напруженості електричного та магнітного полів перпендикулярні до проводів, їх початкові фази коливань збігаються з відповідними фазами струму та напруги .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)