АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

А квадрат середньоквадратичної похибки окремого вимірювання – дисперсії

Читайте также:
  1. IX Фестиваль активного семейного отдыха «Зимние забавы в Угличе»: на фестивальной площадке раскинут русскую шаль площадью более 50 квадратных метров.
  2. АППРОКСИМАЦИЯ ОПЫТНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ
  3. Види ознак та їх вимірювання
  4. Виду пары квадратичных форм
  5. ВИМІРЮВАННЯ АРТЕРІАЛЬНОГО КРОВ'ЯНОГО ТИСКУ.
  6. Вимірювання вертикальних кутів.
  7. Вимірювання зміцнення демократії: типи свідчень і висновків
  8. Вимірювання коефіцієнта лінійного розширення металу
  9. Вимірювання конфліктної поведінки
  10. Вимірювання напруги
  11. Вимірювання фізичних величин та визначення похибок вимірювання

. (1.11)

На практиці необхідно знати ймовірність того, що абсолютна величина похибки вимірювань не перевищує деякого заздалегідь заданого значення, наприклад . Цю ймовірність можна визначити за кривою Гауса (рис. 1.3). Проведемо ординати, які відповідають значенням та (рис. 1.3). Заштрихована частина площини, яка міститься між вказаними ординатами, віссю абсцис і кривою Гауса, чисельно дорівнюватиме ймовірності того, що абсолютна величина похибки вимірювань не перевищує значення . Зі зменшенням зменшується і заштрихована площина, тобто зменшується ймовірність появи похибки за модулем від 0 до . У табл. 1.1 наведено цю ймовірність для деяких значень похибки . Значення похибки взято в масштабі , що зручно для порівняння ймовірностей різних похибок.

 

Таблиця 1.1

Значення похибки 1 2 3
Імовірність того, що результат вимірювання належить інтервалу 0,683 0,954 0,997

 

З табл. 1.1 випливає, що коли ми виконаємо 1000 дослідів, то приблизно у 683 дослідах абсолютна похибка буде меншою або дорівнювати . Можна стверджувати, із імовірністю0,683 результат вимірювання належатиме інтервалу або

, (1.12)

де , . Знайдену таким чином похибку () називають стандартним відхиленням, або стандартною похибкою.

 

Рисунок 1.3

 

Якщо вибрати іншу ширину інтервалу, тоді звичайно ймовірність буде теж іншою. Наприклад, виберемо . Тоді результат вимірювання належатиме інтервалу (1.12) вже з імовірністю 0,997. Такий алгоритм розрахунку випадкової похибки називають правилом “трьох сигм”.

Як бачимо, випадкову похибку необхідно характеризувати як модулем самої похибки, так і відповідною ймовірністю. Інтервал називають довірчим інтервалом, а ймовірність потрапляння значення виміряної величини в цей інтервал – довірчою ймовірністю.

Таким чином, для характеристики випадкової похибки необхідно задавати довірчий інтервал і довірчу ймовірність. Абсолютна похибка, що визначає подвійну ширину довірчого інтервалу, може бути поданою у вигляді

, (1.13)

де – деякий коефіцієнт, що залежить від довірчої ймовірності .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)