АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лабораторное задание. Установка (рис. 4) состоит из насаженных на одну ось шкива диаметром d и диска, на котором закрепляется исследуемое тело

Читайте также:
  1. Глава 20. Задание. День первый
  2. Домашнее задание. Мое место силы
  3. Задание.
  4. Задание. Решить задачи
  5. Индивидуальное задание.
  6. Индивидуальное задание. Финансовой состояние организации и пути его совершенствования
  7. Лабораторное задание
  8. Лабораторное задание.
  9. Лабораторное задание.
  10. Лабораторное задание.
  11. Лабораторное занятие 6

Установка (рис. 4) состоит из насаженных на одну ось шкива диаметром d и диска, на котором закрепляется исследуемое тело. На шкив намотана нить, к концу которой прикреплен груз массой m1. Если нить перекинуть через блок и дать ей возможность ускоренно опускаться, то шкив, диск и исследуемое тело начнут вращаться.

 
 

 


Рис. 4.

 

При ускоренном движении грузика m1 вниз сила натяжения нити будет

 

, (23)

 

где a - линейное ускорение груза, численно равное тангенциальном ускорению точек поверхности шкива, из которого сматывается нить; g - ускорение свободного падения ().

Сила, которая создает крутящий момент численно равная, но противоположно направлена силе натяжения и приложена к ободу шкива. Плечом этой силы есть половина диаметра шкива (радиус шкива). Следовательно, крутящий момент

 

(24)

 

Если учесть, что пройденный ускоренно падающим грузом путь равен

 

, то

 

, (25)

 

а угловое ускорение вращающихся частей, на основании формулы (15):

 

(26)

 

Вращающий момент с учетом соотношения (24) выразится так:

 

 

В этом выражении величина , поэтому можно считать, что

 

(27)

 

Из основного закона динамики вращательного движения (22)

 

,

 

а если подставить выражения (22) и (27), то расчетная формула для определения момента инерции I для данного положения исследуемого тела будет иметь вид:

 

(28)

 

6. Порядок выполнения работы:

1. Измерить штангенциркулем диаметр шкива d.

2. Намотать нить с грузом (m1) на шкив, пропустить через блок.

3. Расположить тело на платформе в одном из трех различных положений, отпустить груз и измерить путь пройденный грузом m1 и время прохождения этого пути.

4. Опыт проделать 3 раза и найти среднее арифметическое значение времени .

5. Изменить расположение исследуемого тела и провести еще две серии измерений (для двух различных положений тела, которые остались).

6. Снять тело с платформы и проделать те же измерения.

7. Для каждого опыта вычислить:

- Величину I по формуле (28), от каждого значения Ii отнять Iплатформы;

- Относительную погрешность косвенных измерений по формуле:

 

, ,

 

где m1, d, , h – масса грузика, диаметр шкива, среднее время опускания грузика и путь грузика, соответственно, а , , , - абсолютные погрешности прямых измерений массы, диаметра шкива, времени и пройденного пути соответственно.

- Абсолютную погрешность косвенного измерения по формуле: .

8. Результаты измерений и вычислений записать в таблицу 1.

Примечание: Масса падающего груза (m1) и масса тела, момент инерции которого исследуется (m2), указанные непосредственно на них, и определены с погрешностью

Таблица 1

№ опыта Положение тела m1,кг d, м h, м с , с
  І положення            
   
   
  ІІ положення        
   
   
  ІІІ положення        
   
   
  Без тіла        
   
   

 

9. Для каждого из положений тела результаты расчетов записать в виде:

 

кг×м2, при =…%

 

В заключении сравнить найденные опытным путем моменты инерции тела с вычисленными по формуле (21).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)