|
||||||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модель Блэка-СколесаПри расчете теоретической премии опциона большое значение имеет, как выбрана математическая модель цены базисного актива. Наиболее часто в настоящее время используется модель в виде скалярного линейного СДУ с мультипликативным шумом с постоянными коэффициентами роста и волатильности:
Знаменитая формула Блэка-Сколеса расчета премии стандартного опциона купли европейского стиля, полученная для такой модели, записывается в виде
где
Ф(x) - функция распределения стандартной нормальной случайной величины, K - цена исполнения опциона, S0 - цена или значение базисного актива в момент покупки опциона, r - безрисковая процентная ставка, T - оставшийся срок до истечения контракта. Для моделей других типов, а также для опционов американского стиля такой простой формулы не получено. Как видим, формула Блэка-Сколеса связывает размер премии с шестью параметрами: Pr = Pr(S0, K, T, r, Премия опциона купли европейского стиля прямо пропорциональна цене базисного актива S0, волатильности Премия опциона продажи может быть записана в аналогичном виде:
При расчете премии параметр
Фактически, выбор значений параметров Поиск по сайту: |
|||||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.627 сек.) |