|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Спонтанне та індуковане випромінювання. Квантові генератори (лазери), їх застосування
Одним із величезних досягнень квантової теорії є створення унікальних джерел світла, які називаються оптичними квантовими генераторами, або лазерами. Під час взаємодії випромінювання з речовиною спостерігаються такі процеси, як поглинання і розсіювання, що призводить до зменшення інтенсивності випромінювання на виході з речовини. Однак можливі процеси, коли потік випромінювання, який проходить через речовину, підсилюється. Такі процеси вперше помітив В.О.Фабрикант у 1939 році, і саме їх реалізовано у квантових генераторах. У 1964 році за створення квантових генераторів М.Г.Басов, О.М.Прохоров і американський фізик Ч. Таунс удостоєні Нобелівської премії. Нехай атоми речовини мають тільки два енергетичні рівні 1 і 2 (рис. 2.20), енергії яких дорівнюють і . Нехай електромагнітне випромінювання інтенсивністю проходить через цю речовину і має частоту , тобто його частота дорівнює одній із частот цього атома. Тоді відбувається вимушений перехід атома зі стану з енергією у стан з енергією , тобто поглинання світла, і сам фотон hv «зникає». Далі збуджений атом може самовільно перейти зі стану у стан , випромінюючи фотон з енергією hv. Так відбувається спонтанне випромінювання. Спонтанне випромінювання − випромінювання, що виникає у збудженому атомі при переході в нормальний стан (стаціонарний) без впливу зовнішньої дії (факторів) (рис. 2.20). Тепер нехай електромагнітне випромінювання інтенсивністю і тієї самої частоти проходить через ту саму речовину, атоми якої перебувають у збудженому стані з енергією (рис. 2.21). Кількість атомів у збудженому стані позначено , а кількість атомів у незбудженому стані – . Тоді фотон з енергією hv може «перевести» атом зі збудженого стану в незбуджений стан . Відбудеться випромінювання фотона з енергією hv, який додається до падаючого фотона, а отже, інтенсивність I на виході з речовини зросте. Таке випромінювання називається вимушеним, або індукованим. Індуковане (вимушене) випромінювання − випромінювання, що виникає у збудженому атомі при переході в нормальний стан під дією зовнішніх факторів (наприклад, під впливом світла). Поняття спонтанне і вимушене випромінювання уперше ввів Ейнштейн у 1915 році. Він створив і теорію індукованого випромінювання, визначивши, до речі, за допомогою цієї теорії теоретичне значення сталої Планка. Процес індукованого випромінювання знайшов практичне застосування у квантових генераторах. Лазерами називаються квантові генератори, які випромінюють у видимому й інфрачервоному діапазонах. Назву утворено від перших літер виразу: light amplification by stimulated emission of radiation – підсилення світла індукованим випромінюванням. У генераторах, які випромінюють у мікрохвильовому діапазоні, літеру l (light – світло) замінено на m. Це так звані мазери. Отже, для того, щоб відбувалося вимушене випромінювання, необхідно перевести речовину в інверсний стан. Заселеність атомами рівня 2 має бути більшою, ніж заселеність рівня 1, тобто . Такий стан речовини називається інверсним станом (рис. 2.20). Лазерному випромінюванню притаманні такі характерні особливості: • когерентність; • високий ступінь монохроматичності – ; • поляризованість, якщо поставити дзеркало під кутом Брюстера; • потужність сягає десятків і сотень мільйонів ват; • ідеально паралельний пучок когерентних променів за допомогою звичайних лінз можна сфокусувати так, що діаметр його перерізу становитиме 0,001 см; • інтенсивність потоку досягає ; • амплітуда електричного поля світлової хвилі – до . Це поле має більшу напруженість, ніж те, яке зв'язує в атомах і молекулах зовнішні електрони. Тому воно руйнує будь-які речовини; • світловий тиск, який дуже важко виміряти у звичайному випромінюванні, у сфокусованого лазерного випромінювання сягає мільйона атмосфер; • розбіжність пучка дуже мала. Якщо вона дорівнює 2", випущений із Землі промінь освітить на Місяці площину діаметром близько 5 км. Ці особливості лазерного випромінювання зумовили сфери його застосування. Назвемо деякі з них. Із теорії дифракції світла випливає ідея запису об'ємного (на відміну від фотографії — плоского зображення) зображення предметів – так званих голограм. Але існуючі лампи та природні джерела світла не відповідають вимогам високого ступеня когерентності випромінювання. Лише створення лазерів дало змогу втілити в життя цю ідею – з'явилася голографія. Нині вже окрім статичних, монохроматичних голограм існують і рухомі, і поліхроматичні голограми. Лазери прошивають калібровані отвори в надтвердих металах і алмазі; їх використовують у медицині – своєрідне зварювання тканин. Уможливлюється зв'язок на відстані, зокрема міжпланетний і навіть міжзоряний: за малої розбіжності пучка густина енергії потоку випромінювання зі зростанням відстані зменшується дуже повільно. Крім того, частота лазерного випромінювання дорівнює , що перевищує частоту радіозв'язку у раз. Стає можливим передавання по одному каналу величезного обсягу інформації, наприклад, десятки тисяч звукових і сотні телевізійних програм одночасно.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |