|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Происхождение Вселенной, эволюция Солнца и солнечной системыТеория возникновения Вселенной.Современная картина мира. Во все времена люди хотели знать, откуда и каким образом произошел мир, как он устроен. В древней культуре господствовали мифологические представления о происхождение мира. Победа христианства утвердила представления о сотворении Богом мира из ничего. С появлением науки в ее современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении и устройстве Вселенной. Примечание. Вселенная - весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной. Строение и эволюция Вселенной изучаются космологией. Космология - один из разделов естествознания находящийся на стыке наук. Космология - это междисциплинарная наука, она использует достижения и методы физики, математики, философии. Предмет космологии - весь окружающий нас мегамир, вся «большая Вселенная», ее задача состоит в описании наиболее общих свойств, строения и эволюции Вселенной. Для наших далеких предков в кажущейся форме небосвода, круговом суточном движении небесных светил шарообразность Вселенной была очевидна. В такой, ограниченной миропониманием и остротой человеческого зрения Вселенной, обязательно должен был существовать центр - как особая точка, равноудаленная от периферии. В IV в. до н. э., с изложением своих взглядов на устройство Вселенной выступил Аристотель - величайший из ученых и философов Древней Греции. «Человек, остановивший Землю» - так называли великого древнегреческого ученого. Аристотель является создателем первой универсальной картины (а не системы) мира. Так как уровень знаний в то время не позволял сделать математическое описание того, что видит человек, наблюдая окружающий мир. Ученый предложил именно картину мира. Первой основополагающей идеей Аристотеля было предположение о том, что Вселенная единственная. Она вечна: никогда не возникала и неуничтожима. Второй идеей Аристотеля стала идея о том, что во Вселенной есть особая точка – центр, к которому в силу своей природы стремились тяжелые элементы, земля и вода. Из-за стремления элементов к центру мира Земля получила форму шара. Признавая шарообразность Земли, Луны и небесных тел, Аристотель поместил в центр Вселенной Землю и сделал ее неподвижной, ведь обитель людей должна покоится в центре Вселенной. Вокруг нее по своим сферам вращались Луна, затем Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн. Вселенная, по мнению Аристотеля, имеет конечные размеры - ее как бы замыкает сфера звезд (Рис.1).
Рис.1 Стационарная геоцентрическая модель мира Аристотеля.
Благодаря высокому научному авторитету Аристотеля его учение на много веков закрепило ложное мнение, что Земля - неподвижный центр Вселенной. Вселенная представлялась конечной и ограничивалась сферой, за пределами которой не мыслилось ничего материального, а потому не могло быть и самого пространства, поскольку оно определялось как нечто, что было (или могло быть) заполнено материей, там Аристотель помещал нематериальный, духовный мир божества, существование которого постулировалось. За пределами материальной Вселенной не существовало и времени, которое Аристотель с гениальной простотой и четкостью определил как меру движения и связал с материей, пояснив, что «нет движения без тела физического». В картине мира Аристотеля впервые была высказана идея взаимосвязанности свойств материи, пространства и времени. Однако после Аристотеля некоторые ученые высказывали смелые и правильные догадки об устройстве Вселенной. Живший в III в. до н. э. Аристарх Самосский, задолго до Птолемея считал, что Земля обращается вокруг Солнца. Он рассчитал, что Солнце - одна, ближайшая из звезд. Именно Аристарх первым создал гелиоцентрическую систему мира, которая, к сожалению, не была детально разработана. Эта идея была встречена крайне враждебно не только по религиозным соображениям, но и как противоречащая «здравому смыслу». Аристарха обвинили в безбожии и осудили на изгнание, а его правильные догадки были забыты. Догматизированная в средневековой Европе, как и на арабском Востоке, аристотелевская картина мира сдерживала развитие астрономии вплоть до эпохи Галилея. Современная космология возникла вначале XX в. после создания релятивистской теории тяготения. Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А. Эйнштейном в 1917 г. Однако она описывала статическую Вселенную и, как показали астрофизические наблюдения, оказалась неверной.
Рис.2 Статическая Вселенная Энштейна. Как ни странно, Эйнштейн боялся, что его теория приведёт к расширяющейся или сжимающейся вселенной. Как и многие учёные своего времени, Эйнштейн был сторонником статической Вселенной и пытался построить её модель так, чтобы Вселенная не обрушилась под собственным тяготением и не расширялась. Он даже ради этого пошёл на изменение общей теории относительности и ввёл дополнительную космическую силу отталкивания, которая должна была уравновесить притяжение звёзд. Новшеством в модели Эйнштейна было то, что его вселенная конечна но, тем не менее, всюду одинакова, иначе говоря, имеет конечные размеры, но не имеет границ. Такая модель вселенной возможна, если пространство считать искривлённым. Двумерным аналогом такого пространства может служить сфера. Трёхмерное пространство Эйнштейна также имеет топологию сферы, оно замкнуто само на себя и удовлетворяет принципам однородности пространства, поскольку не имеет ни центра, ни краёв и равномерно заполнено галактиками (Рис. 2). Эйнштейн, однако, не решился опровергнуть устоявшееся мнение, поскольку не был до конца уверен в безошибочности своих выводов. В 1922-1924 гг. советским математиком А.А. Фридманом были предложены общие уравнения для описания всей Вселенной, меняющейся с течением времени. Звездные системы не могут находиться в среднем на неизменных расстояниях друг от друга. Они должны либо удаляться, либо сближаться. Такой результат - неизбежное следствие наличия сил тяготения, которые главенствуют в космических масштабах. Вывод Фридмана означал, что Вселенная должна либо расширяться, либо сжиматься (модель пульсирующей Вселенной). Отсюда следовал пересмотр общих представлений о Вселенной. В 1929 г. американский астроном Э. Хаббл (1889-1953) с помощью астрофизических наблюдений открыл расширение Вселенной, подтверждающее правильность выводов Фридмана. Примечание. Хаббла интересовал вопрос об общем строении нашего мира - Вселенной. Ещё в своей статье "Внегалактические туманности" в 1926 г. он рассматривал как возможную релятивистскую модель (от лат. relativus - "относительный") расширяющейся Вселенной голландского астронома Виллема де Ситтера. Но, не очень доверяя теоретикам и теории, Хаббл полагал, что только наблюдения могут привести к пониманию истинной природы вещей. В моделях расширяющейся Вселенной скорость взаимного удаления галактик должна быть прямо пропорциональна расстоянию между ними. Он считал необходимым с помощью наблюдений убедиться в том, что у галактик с ростом расстояний растут и лучевые скорости. Хаббл составил список наиболее слабых галактик, которые, естественно, предполагались наиболее далёкими, и измерил их лучевые скорости. Для одной очень далёкой галактики (NGC 7616) он получил по смещениям спектральных линий в красную сторону лучевую скорость 3779 км/с. Это огромное значение сказало Хабблу о многом. В марте 1929 г. в очередном номере "Трудов Национальной академии наук США" была опубликована статья Хаббла "Связь между расстоянием и лучевой скоростью внегалактических туманностей". Он накопил сведения о лучевых скоростях и удалённости 46 туманностей. На основе сопоставления наблюдательных данных учёный пришёл к выводу: "Далёкие галактики уходят от нас со скоростью, пропорциональной удалённости от нас. Чем дальше галактика, тем больше её скорость". Таким образом, величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва (Рис. 3).
Рис. 3 Модель расширяющейся Вселенной (Теория Большого взрыва).
Все вещество в Космосе в какой-то начальный момент было сдавлено буквально ни в что, спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность, ее практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью. В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»! Этому моменту ученые дали название «Большой взрыв». Вселенная начала расширяться и остывать. Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают ученые, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в ту далекую эпоху, когда не было еще ни звезд, ни галактик, ни нашей Солнечной системы. Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940-х гг. американский физик Джордж Гамов (1904— 1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчеты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной впервые секунды ее существования была очень высокая температура. Нагретое вещество «светилось», испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения, примерно 5 - 6 К. В 1965 г. американские ученые-радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, реликт (от лат. «остаток», отсюда и название излучения «реликтовое») тех далеких времен, когда Вселенная была фантастически горяча. О расширяющейся Вселенной (а ее структурными единицами являются галактики) свидетельствует и красное смещение длин волн света, испускаемых галактиками в связи с их удалением от наблюдателя, согласно эффекта Доплера. Это открытие В.М. Слайфера и Э.П. Хаббла (американских астрономов) не потеряло в свое значение и в наше время. Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно 13,5 миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом. На протяжении нескольких миллиардов лет после "большого взрыва" простейшее бесформенное вещество постепенно превращалось в атомы. С возникновением атомов водорода начинается звездная эра - эра частиц, точнее говоря, эра протонов и электронов. Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов (Фотон - это элементарное возмущение электромагнитного поля). Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Колоссальные водородные сгущения - зародыши сверхгалактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной – сверхгалактики, являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной. Газ и пыль распределены в галактике неравномерно, облаками — есть облака, где плотность рассеянной материи в сотни и тысячи раз выше средней. Там и рождаются новые звезды, причем рождаются выводками, почти одновременно по галактическому масштабу времени — за считанные миллионы лет или даже сотни тысяч лет (Рис 4).
(Рис 4) Рождение звезд. Примечание. Возраст Вселенной молено определить по крайней мере тремя способами: Возраст элементов — возраст химических элементов можно оценить, используя явление радиоактивного распада с тем, чтобы определить возраст определённой смеси изотопов. Возраст скоплений — возраст самых старых шаровых скоплений звёзд молено оценить, используя кривую в координатах светимость-температура для звёзд крупных шаровых скоплений. Этим методом было показано, что возраст Вселенной больше, чем 12,07 млрд лет, с 95%-й доверительной вероятностью. Возраст звёзд — возраст старейших звёзд белых карликов можно оценить, используя измерения яркости белых карликов. Более старые белые карлики будут более холодными и потому менее яркими. Обнаруживая слабые белые карлики, молено оценить продолжительность времени, в течение которого данный белый карлик охлаждался. Oswalt, Smith, Wood и Hintzen (1996, Nature, 382, 692) проделали это и получили возраст 9,5 млрд лет для звёзд основного диска Млечного пути. Они оценили возраст Вселенной по крайней мере на 2 млрд лет старше возраста диска, то есть больше 11,5 млрд лет. Кроме того, существуют способы оценки возраста Вселенной, исходя из космологических моделей на основе определения постоянной Хаббла.
1.2.Эволюция Солнца и солнечной системы. Солнце с планетами сгустились из межзвезного газа и пыли около 4.5 миллиардов лет назад (Рис. 5). Вселенная в то время была примерно на треть моложе нынешней и не так уж сильно изменилась с тех пор. В наше время тоже рождаются звезды, многие из них вместе со своими планетными системами. Важно понять, как это происходит.
Рис. 5 Рождение Солнце и планет из межзвезного газа и пыли. Происхождение планет всегда было менее ясным вопросом, чем происхождение звезд. Проблема долго оставалась чисто теоретической, поскольку ни сами планетные системы, ни процесс их образования наблюдать не могли. В прошлом и в начале нынешнего веков основной спор шел между двумя концепциями. Первая: планеты образовались из звездного вещества при катастрофическом сближении двух звезд. Вероятность такого события ничтожна, значит и число планетных систем должно быть ничтожным. Вторая гипотеза: планеты образовались вместе со звездой из межзвездного материала, и это закономерный процесс. Тогда планеты должны быть у многих, возможно у большинства звезд. Постепенно победила вторая гипотеза. Уже в середине нашего века она стала общепризнанной и обросла конкретными деталями. Получился следующий сценарий: сначала образуется протопланетный диск, в нем выравниваются скорости, мелкие частицы начинают слипаться во все более крупные комья, образуются зародыши планет, которые с помощью своего тяготения начинают быстро расти, пока не соберут на себя весь материал. Возраст Солнца примерно равен 4.5 миллиарда лет. С момента своего рождения оно израсходовало половину водорода содержащегося в ядре. Оно будет продолжать "мирно" излучать следующие 5 миллиардов лет или около того (хотя его светимость возрастет примерно вдвое за это время). Но, в конце концов, оно исчерпает водородное топливо, что приведет к радикальным переменам, что является обычным для звезд но, увы, приведет к полному уничтожению Земли (и созданию планетарной туманности). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и обращается вокруг него, делая один оборот более чем за 200 миллионов лет.
Рис.6 Место Солнечной системы в Галактике Млечного пути. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу за 8 земных суток. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики. Между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке». Области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83т) (Рис.6). Солнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений, (соответственно популяций III и II). Текущий возраст Солнца (точнее — время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 миллиарда лет (Рис. 7).
Рис. 7 Жизненный цикл Солнца. через 7,8 миллиарда лет, когда температура в ядре достигнет приблизительно 100 миллионов градусов, в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазе развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу и сбрасывать оболочку. По-видимому, расширяющиеся внешние слои Солнца, в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы. Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а большая часть её атмосферы рассеется в космическое пространство. Увеличение температуры Солнца в этот период таково, что в течение следующих 500—700 миллионов лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. После того, как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик имеющий массу в два раза меньшую, чем масса современного Солнца, но с ненормально высокой плотностью вещества: 2 тонны на кубический сантиметр. Этот белый карлик будет медленно остывать, превращаться в черный карлик и это будет конец Солнца. Описанный выше сценарий эволюции Солнца типичен для звёзд малой и средней массы. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |