АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ДУ с разделяющимися переем-ми

Читайте также:
  1. Дифференциальные уравнения с разделяющимися переменными
N(x)R(y)dx+M(x)K(y)dy=0 (1)
Это ур-ие наз. Ур-ем с разделяющимися переменными. Метод его решения: разделив (1) на произведение M(x)K(y)
получим
N(x)/M(x)*dx+K(y)/R(y)*dy=0 (2)
Уравнение (2) наз. Ур-ем с разделенными переменными. Операция деления уравнения (1) на произведение М(х)R(y)
Наз. разделением переменных. Интегрируя (2), получим общий интеграл
∫(N(x)/M(x)*dx)+ ∫(K(y)/R(y)*dy)=0 исходного уравнения. При делении (1) на произведение М(х)R(y), можно потерять некоторые решения, которые получаются из уравнения
М(х)R(y)=0
Определяя из этого уравнения решения y=ϕ(x), следует проверить, является ли оно решением уравнения (1). Если не является, его следует отбросить, а если является, то проверить, входит ли оно в общий интеграл.
Если входит, то оно есть частное решение, а если не входит, то это решение называется особым.
Пример. Решить уравнение y(x+1)dx+(y-1)xdy=0.
Решение. Разделим уравнение на произведение xy, получим:
(x+1)/x*dx+(y+1)/y*dy=0;
dx+(dx/x)+dy+ (dy/y)=0
Интегрируя получим общий интеграл
x+ln|x|+y+ln|y|=c;
ln|xy|+x+y=c.
В этом уравнении М(х)R(y) имеет вид xy=0. Его решения x=0, y=0
является решениями исходного уравнения, но не входит в общий интеграл.
Следовательно, решения x=0, y=0 является особыми.

ДУ полных диф-лов

Рассмотрим диф. уравнение вида: (1). Если левая часть этого уравнения явл. полным дифференциалом некоторые ф-ции 2-х переменных U(x,y), т е M(x,y)dx+N(x,y)=du (2), то это уравнение называется уравнением в полных диф. Тогда ур-ние (1) принимает вид du(x,y)=0. Общим интегралом этого ур-ния будет равенство U(x,y)=C=const. Втесним условие, при кот ур-ние (1) явл. ур-нием в полных диф. Выражение для полного диф. ф-ции 2-х переменных имеем вид (3). Сравнивая (2) и (3), имеем: , . Дифференцируем первое из этих равенств по у, а второе – по х, имеем: , отсюда, предполагая непрерывность вторых произвольных, получаем (4) – условие, когда данное уравнение явл. уравнением полных диф.

60.1.ДУ вида dy/dx=f(ax+by+c)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)