|
|||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вер-сть попадания в заданный интервал непрер.случ.вел-ныВероятность того, что значение случайной величины Fx (x) попадает в интервал (a, b), равная P(a < x < b) = Fx (b) -Fx (a), вычисляется по формулам: - для непрерывной случайной величины и - для дискретной случайной величины.
Если a= - , то если b= , то Применение диф-ла в приближённых вычис-ях Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x. Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dyили Δy»f'(x0)·Δx. Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f'(x0)·Δx. Откуда f(x) ≈ f(x0) + f'(x0)·Δx y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01. Имеем Δy≈dy=f'(x)·Δx. f'(x)=2x – 2,f'(3)=4, Δx=0,01. Поэтому Δy ≈ 4·0,01 = 0,04. y = x2 – 2x. Пример:Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01. Имеем Δy≈dy=f'(x)·Δx. f'(x)=2x – 2,f'(3)=4, Δx=0,01. Поэтому Δy ≈ 4·0,01 = 0,04. Непрер.случ.вел-на.ф-ция плотности вер-сти СВ наз. величины к-рые могут принимать те или иные значения заранее до опыта неизвестно какие именно. Различают дискретные и непрерывные СВ. Дискретные СВ. Значения обознач х1,х2,…,хn,… Всякое описание значений, к-рые может принимать СВ и соответствующие этим значениям вероятности наз. законом распределения СВ. Для дискретной СВ:
; Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины px (x), которая связана с функцией распределения Fx (x) формулами и . Отсюда, в частности, следует, что для любой случайной величины . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |