|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Практическое занятие 2
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной: , где – общая сумма квадратов отклонений; – сумма квадратов отклонений, обусловленная регрессией («объясняемая» или «факторная»); – остаточная сумма квадратов отклонений. Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака y характеризует коэффициент (индекс) детерминации R2: . Коэффициент детерминации – квадрат коэффициента или индекса корреляции. F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы H0 статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы: , где n – число единиц совокупности; m – число параметров при переменных х. Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно α принимается равной 0,05 или 0,01. Если Fтабл < Fфакт, то Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл > Fфакт, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t -критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки: , , . Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам: ; ; . Сравнивая фактическое и критическое (табличное) значения Связь между F -критерием Фишера и t -статистикой Стьюдента выражается равенством . Если tтабл < tфакт, то H0 отклоняется, т.е. а, b и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если tтабл > tфакт, то гипотеза Н0 не отклоняется и признается случайная природа формирования a, b или rху. Для расчета доверительного интервала определяем предельную ошибку Δ для каждого показателя: , . Формулы для расчета доверительных интервалов имеют следующий вид: ; ; ; ; ; . Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения. Прогнозное значение ур определяется путем подстановки в уравнение регрессии ŷх = а + b х соответствующего (прогнозного) значения хр. Вычисляется средняя стандартная ошибка прогноза mŷp: , где ; и строится доверительный интервал прогноза: ; ; , где . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |