|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Практическое занятие 1. Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов)
Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Каждый уровень временного ряда формируется из трендовой (T), циклической (S) и случайной (Е) компонент. Модели, в которых временной ряд представлен как сумма перечисленных компонент, – аддитивные модели, как произведение – мультипликативные модели временного ряда. Аддитивная модель имеет вид: Y = Т + S + Е; Мультипликативная модель: Y = T • S • E. Автокорреляция уровней ряда – это корреляционная зависимость между последовательными уровнями временного ряда: , где , – коэффициент автокорреляции уровней ряда первого порядка; , где , – коэффициент автокорреляции уровней ряда второго порядка. Формулы для расчета коэффициентов автокорреляции старших порядков легко получить из формулы линейного коэффициента корреляции. Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда, а график зависимости ее значений от величины лага (порядка коэффициента автокорреляции) – коррелограммой. Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравниванием временного ряда. Для этого чаще всего применяются следующие функции: • линейная ŷt = a + b • t; • гипербола ŷt = а + b / t; • экспонента ŷt =ea+b • t; • степенная функция ŷt =a • tb; • парабола второго и более высоких порядков ŷt =a + b1 • t + b2 • t2 +... + bk • tk. Параметры трендов определяются обычным МНК, в качестве независимой переменной выступает время t = 1,2,..., n, а в качестве зависимой переменной – фактические уровни временного ряда уt. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |