|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Асимметрия. Эксцесс
Приведем краткий обзор характеристик, которые наряду с уже рассмотренными применяются для анализа статистических рядов и являются аналогами соответствующих числовых характеристик случайной величины. Среднее выборочное и выборочная дисперсия являются частным случаем более общего понятия – момента статистического ряда.
Определение. Начальным выборочным моментом порядка называется среднее арифметическое - х степеней всех значений выборки: или . Из определения следует, что начальный выборочный момент первого порядка: . Определение. Центральным выборочным моментом порядка называется среднее арифметическое - хстепеней отклонений наблюдаемых значений выборки от выборочного среднего : или . Из определения следует, что центральный выборочный момент второго порядка: . Определение. Выборочным коэффициентом асимметрии называется число , определяемое формулой: . Выборочный коэффициент асимметрии служит для характеристики асимметрии полигона вариационного ряда. Если полигон асимметричен, то одна из ветвей его, начиная с вершины, имеет более пологий «спуск», чем другая. Если , то более пологий «спуск» полигона наблюдается слева; если - справа. В первом случае асимметрию называют левосторонней, а во втором - правосторонней.
Определение. Выборочным коэффициентом эксцесса или коэффициентом крутости называется число , определяемое формулой: . Выборочный коэффициент эксцесса служит для сравнения на «крутость» выборочного распределения с нормальным распределением. Коэффициент эксцесса для случайной величины, распределенной по нормальному закону, равен нулю. Поэтому за стандартное значение выборочного коэффициента эксцесса принимают . Если , то полигон имеет более пологую вершину по сравнению с нормальной кривой; если , то полигон более крутой по сравнению с нормальной кривой. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |