АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Асимметрия. Эксцесс

Читайте также:
  1. Межполушарная асимметрия. Проблема расщепленного мозга

 

Приведем краткий обзор характеристик, которые наряду с уже рассмотренными применяются для анализа статистических рядов и являются аналогами соответствующих числовых характеристик случайной величины.

Среднее выборочное и выборочная дисперсия являются частным случаем более общего понятия – момента статистического ряда.

 

Определение. Начальным выборочным моментом порядка называется среднее арифметическое - х степеней всех значений выборки:

или .

Из определения следует, что начальный выборочный момент первого порядка: .

Определение. Центральным выборочным моментом порядка называется среднее арифметическое - хстепеней отклонений наблюдаемых значений выборки от выборочного среднего :

или .

Из определения следует, что центральный выборочный момент второго порядка:

.

Определение. Выборочным коэффициентом асимметрии называется число , определяемое формулой: .

Выборочный коэффициент асимметрии служит для характеристики асимметрии полигона вариационного ряда. Если полигон асимметричен, то одна из ветвей его, начиная с вершины, имеет более пологий «спуск», чем другая.

Если , то более пологий «спуск» полигона наблюдается слева; если - справа. В первом случае асимметрию называют левосторонней, а во втором - правосторонней.

 

Определение. Выборочным коэффициентом эксцесса или коэффициентом крутости называется число , определяемое формулой:

.

Выборочный коэффициент эксцесса служит для сравнения на «крутость» выборочного распределения с нормальным распределением.

Коэффициент эксцесса для случайной величины, распределенной по нормальному закону, равен нулю.

Поэтому за стандартное значение выборочного коэффициента эксцесса принимают .

Если , то полигон имеет более пологую вершину по сравнению с нормальной кривой; если , то полигон более крутой по сравнению с нормальной кривой.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)