АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Математического ожидания при неизвестной дисперсии

Читайте также:
  1. Вопрос 25 Дисперсия света. Методы наблюдения. Электронная теория дисперсии света. Спектры
  2. Вопрос: Каково было бы соотношение потерь для шоковой терапии при рациональных ожидания в случае высокого кредита доверия со стороны населения?
  3. Время ожидания при прохождении проливов и каналов
  4. Динамическая модель AD-AS при рациональных и адаптивных ожиданиях.
  5. Доверительный интервал для неизвестного математического ожидания нормального распределения (при известной дисперсии)
  6. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии
  7. Использование математического ожидания и среднего квадратичного отклонения для оценки риска.
  8. Исходные данные для проведения анализа затрат с применением метода дисперсии
  9. Кривая Филлипса, инфляционные ожидания и кривая AS.
  10. Макроэкономическая политика при рациональных ожиданиях.
  11. Методы математического моделирования

Пусть случайная величина имеет нормальное распределение: , причем - неизвестно, - задана.

Если неизвестна, то пользуются оценкой .

Введем случайную величину ,

где - исправленное среднее квадратическое отклонение случайной величины , вычисленное по выборке:

;

Случайная величина имеет распределение Стьюдента с степенью свободы.

Тогда доверительный интервал для оценки имеет вид:

,

где - выборочное среднее;

- исправленное среднее квадратическое отклонение;

- находим по таблице квантилей распределения Стьюдента (Приложение 4) в зависимости от числа степеней свободы и доверительной вероятности .

 

 

Пример 7. Произведено пять независимых наблюдений над случайной величиной . Результаты наблюдений таковы:

, , , , .

Построить для неизвестного доверительный интервал, если .

 

¦ 1. Находим :

 

2. Находим :

3. По таблице квантилей распределения Стьюдента (Приложение 4) для и находим :

 

Доверительный интервал:

или . ˜


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)