СТАТИСТИЧЕСКИЕ ОЦЕНКИ
Одной из центральных задач математической статистики является задача оценивания теоретического распределения случайной величины на основе выборочных данных.
При этом часто предполагается, что вид закона распределения генеральной совокупности известен, но неизвестны параметры этого распределения, такие как математическое ожидание, дисперсия. Требуется найти приближенные значения этих параметров, то есть получить статистические оценки указанных параметров.
Определение. Статистической оценкой параметра теоретического распределения называют его приближенное значение, зависящее от данных выбора.
Рассматривая выборочные значения как реализации случайных величин , получивших конкретные значения в результате опытов, можно представить оценку как функцию этих случайных величин: . Это означает, что оценка тоже является случайной величиной.
Если для оценки взять несколько выборок, то получим столько же случайных оценок .
Если число наблюдений невелико, то замена неизвестного параметра оценкой приводит к ошибке, которая тем больше, чем меньше число опытов.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Поиск по сайту:
|