АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

СТАТИСТИЧЕСКИЕ ОЦЕНКИ

Читайте также:
  1. III. ДРУГИЕ ОЦЕНКИ КОЛЛЕКТИВНОЙ ДУШЕВНОЙ ЖИЗНИ
  2. III. Статистические таблицы
  3. III.4. Критерии оценки преступления. Вина
  4. Kритерии оценки новой продукции
  5. Алгоритм оценки погрешностей прямых измерений физических величин
  6. Анализ и оценки уязвимостей
  7. Анкета оценки уровня обучения студента курса «Системный анализ»
  8. Аудит состояния учета, оценки и сохранности остатков незавершенного производства
  9. Балльная оценка параметров инвестиционной привлекательности организаций и первичные параметры оценки. Метод интегральной оценки.
  10. Балльно-рейтинговая система оценки успеваемости
  11. Важнейшие международные организации и их статистические службы
  12. Весовые коэффициенты для оценки факторов, определяющих привлекательность фирм-заказчиков

 

Одной из центральных задач математической статистики является задача оценивания теоретического распределения случайной величины на основе выборочных данных.

При этом часто предполагается, что вид закона распределения генеральной совокупности известен, но неизвестны параметры этого распределения, такие как математическое ожидание, дисперсия. Требуется найти приближенные значения этих параметров, то есть получить статистические оценки указанных параметров.

 

Определение. Статистической оценкой параметра теоретического распределения называют его приближенное значение, зависящее от данных выбора.

Рассматривая выборочные значения как реализации случайных величин , получивших конкретные значения в результате опытов, можно представить оценку как функцию этих случайных величин: . Это означает, что оценка тоже является случайной величиной.

Если для оценки взять несколько выборок, то получим столько же случайных оценок .

Если число наблюдений невелико, то замена неизвестного параметра оценкой приводит к ошибке, которая тем больше, чем меньше число опытов.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)