|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Mathematical models of growth of number of a populationAll processes in communities of alive objects occur in time and in space. In some cases it is possible to consider, that in all parts of the considered volume processes are synchronous. In this case the elementary dot models are described by system of the differential equations.
where х - number of i -th population (the kinetic equations).
Sizes
As a rule, they consist of several composed. Positive members describe profit of a component, negative - its loss. Let's consider three mathematical models, allowing to define dependence of change of number of a population on time for various conditions of functioning of system. 1. Model of natural growth of number of a population (model Maltys). The model under the described scheme is created. Real system: there is some population of one kind (microorganisms, hares, etc.) in which there are vital processes in all of them variety. Statement of a problem. To find laws of change of number of a population on time. The basic assumptions: 1. There are only processes of duplication and natural destruction, speeds of processes of duplication and natural destruction are proportional to number of individuals at present to time. 2. It is not considered biochemical, physiological processes. 3. There is no struggle between individuals for a place of dwelling, for food (infinitely big space and quantity peep). 4 It Is considered only one population, there are no predators. Let's enter sizes: x - number of a population during the moment t, R -Speed of duplication,
S-speed of natural destruction,
T hen Let's write the differential equation of balance. Change of number of individuals in unit of time is defined by quantity born for this time and died:
T he entry condition: at t=0 number of individuals
Let's solve the equation: fro m here
The analysis of the decision. 1.
Change of number of a population for the lack of a competition between individuals at
Fig. 2. 2. 3. At For approach of the given model a reality it is necessary to remove assumptions. Let there is a struggle between individuals, for a place of dwelling, presence of predators therefore is added an additional source of destruction. The equations of balance between number of the born and perishing individuals passes in complex system of the differential equations.
Decisions of system of the differential equations
Fig. 4.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.43 сек.) |