АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод Зейделя. В методе простой итерации не используется кажущаяся очевидной возможность улучшения сходимости итерационного процесса – немедленное введение в расчет вновь

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Методические основы
  3. I. Предмет и метод теоретической экономики
  4. II. Метод упреждающего вписывания
  5. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  6. II. Методы непрямого остеосинтеза.
  7. II. Проблема источника и метода познания.
  8. II. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ
  9. III. Методологические основы истории
  10. III. Предмет, метод и функции философии.
  11. III. Социологический метод
  12. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»

В методе простой итерации не используется кажущаяся очевидной возможность улучшения сходимости итерационного процесса – немедленное введение в расчет вновь вычисленных компонент вектора x(k). Эта возможность используется в методе Зейделя. Общую формулу итерационного процесса для приведенной системы:

(1),

аналогичную формуле (6) метода простых итераций можно записать в виде:

i=1,2,…,n (2)

Или в развернутом виде:

……… (3)

……...

Теорема сходимости остается верной и для метода Зейделя. Обычно метод Зейделя дает лучшую сходимость, чем метод простой итерации, но приводит к более громоздким вычислениям.

Редко, встречаются случаи, когда метод простой итерации расходится, а метод Зейделя сходится, хотя бывают случаи и обратные.

Пример 6.

Решить систему методом Зейделя:

       
       
       

 

 

Шаг 1. Приведем систему к виду, удобному для итераций:

x1 1,2   -0,1 -0,1
x2 1,3 -0,2   -0,1
x3 1,4 -0,2 -0,2  

Начальные приближения:

k x1 x2 x3
  1,2 1,3 1,4
  0,93 0,974 1,0192
  1,00068 0,997944 1,000275
  1,000178 0,999937 0,999977
  1,000009 1,000001 0,999998
       

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)