АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нарушения ритма сердца

Читайте также:
  1. VII. Сокровенная сердцевина сердца
  2. VIII.4. Обязательства из правонарушения
  3. А) замкнутая; б) незамкнутая; в) сердца нет; г) сердце однокамерное; д) кровь насыщена дыхательными пигментами; е) кровь бесцветная.
  4. А. Нарушения образования импульса
  5. Агнозии (нарушения восприятия)
  6. Административная и уголовная ответственность за налоговые правонарушения и преступления
  7. Административная ответственность за информационные правонарушения, посягающие на избирательные права граждан.
  8. Административная ответственность за нарушения прав на использование информацией
  9. Административная ответственность юридических и физических лиц за нарушения законодательства по архивному делу и ведению делопроизводства.
  10. Административные правонарушения, заключающиеся в неисполнении обязанностей, предусмотренных законодательством о налогах и сборах и связанных со сроками исполнения.
  11. Административный надзор в производстве по делам об административных правонарушениях
  12. Акты реагирования прокурора на нарушения закона

Физиологические особенности системы автоматизма сердца

Вовлечение отделов сердца в циклично-согласованную сократительную деятельность обеспечивается специализированной системой автоматизма. Ее пейсмейкерные клетки способны самостоятельно генерировать электрические импульсы и распространять их на сократительный рабочий миокард. Здоровый рабочий миокард пейсмейкерную активностью не проявляет.

С электрофизиологических позиций автоматизм представляет собой самоподдерживающийся механизм формирования потенциала действия (Рис.29).

В пейсмейкерах синусного и атриовенотрикулярного узла генерация потенциала действия (ПД) имеет свои особенности:

♦- их мембранные потенциалы покоя -55 и мВ и -65мВ соответственно совпадают и почти совпадают с величиной порогового потенциала (-60мВ), обеспечивая высокую скорость деполяризации и формирования ПД: 60 – 80 импульсов/мин. в СА-узле и 40 – 50 импульсов/мин. в АВ-узле;

♦- ПД формируется внутриклеточным входом ионов Сα через специфические If-каналы, активированные входом ионов Nα (фазы 0 и 4).

♦- поскольку потенциал покоя в пейсмейкерах АВ-узла ниже, чем СА-узла, то на деполяризацию и формирование ПД затрачивается больше времени (вдвое низкий автоматизм).

В «латентных» - скрытых пейсмейкерах волокон Пуркинье, пучка Гиса и рабочего миокарда формирование ПД имеет другой механизм:

♦- их мембранный потенциал покоя низок: -90 – 95мВ и во время диастолы желудочков (фаза 4) медленно повышается входом ионов Nα и выходом из клеток ионов К до пороговой величины. Эта фаза спонтаннойдеполяризации занимает половину времени формирования ПД, что обусловливает низкий уровень автоматизма «латентных» пейсмейкеров;

♦- по достижении величины порогового потенциала (-60мВ) открываются потенциалзависимые Nα-каналы, через которые в клетки лавиннобразно входят ионы Nα, обеспечивая быструю деполяризацию мембран (фаза 0) и формирование ПД;

♦- в конце фазы 0 (-40мВ) открываются потенциалзависимые «медленные» Сα-каналы, обеспечивающие внутриклеточный вход ионов Сα фаза 2), которые вместе с ионами Nα активируют контрактильный механизм миокарда;

♦- реполяризация и восстановление исходного потенциала покоя обеспечиваются выходом из клеток ионов К (фазы 1 и 3).

Общая продолжительность ПД около 1 секунды и ⅔ этого времени (фазы 0,1,2)клетки находятся в состоянии абсолютной рефрактерности (эффективный рефрактерный период – ЭРП) и не возбуждаются дополнительными стимулами. В фазу 3 абсолютная рефрактерность сменяется относительной и клетки способны генерировать новый ПД.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)