|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Надійні інтервали для математичного сподівання та середнього квадратичного відхиленняДовірчі інтервали для оцінки математичного сподівання при відомому Припускаючи, що випадкова величина Х розподілена нормально, причому середнє квадратичне відхилення цього розподілу відоме. Потрібно оцінити невідоме математичне сподівання по вибірковій середній xВ, тобто поставимо задачу знаходження довірчого інтервалу, що накриває параметр m з надійністю . Так як величина є сума n незалежних однаково розподілених випадкових величин Хі, то згідно центральної граничної теореми її закон розподілу близький до нормального. Параметри розподілу такі: . Вимагаємо, щоб виконувалась рівність: , де - задана надійність. Як відомо , а замінивши Х на і на , отримаємо: , (1) де . Знайшовши з останньої рівності , можна записати . Зауважимо, що ймовірність Р (надійність) задана, і рівна , тому маємо . Смисл одержаного співвідношення такий: з надійністю можна стверджувати, що довірчий інтервал накриває невідомий параметр m; точність оцінки .З класичної оцінки випливає, що коли об’єм вибірки n зростає, то точність оцінки збільшується, а із збільшенням надійності збільшується t (Ф(t) – зростаюча функція), тобто зменшується точність. Довірчі інтервали для математичного сподівання при невідомому Нехай тепер випадкова величина Х генеральної сукупності розподілена нормально, але середнє квадратичне відхилення невідоме. Потрібно оцінити невідоме математичне сподівання з допомогою довірчих інтервалів, тобто задача пункту 1), але тепер невідоме. Перш ніж розв’язувати цю задачу, введемо деякі поняття. Незалежні умови, що накладаються на ni (чи Wi), називаються в’язами. Наприклад, - тобто вимога того, щоб співпадали теоретичні та вибіркові значення середнього арифметичного та дисперсії і т.д. Різниця між числом інтервалів та числом в’язей називається числом ступенів вільності k=n-r, де r – число в’язей. Отже, користуючись розподілом Стьюдента, можна знайти довірчий інтервал: , (2) що накриває параметр m з надійністю . Тут та S шукається по вибірці, а по таблиці 3 (див. додаток) по заданих n можна знайти . Довірчий інтервал для оцінки середнього квадратичного відхилення Нехай випадкова величина Х генеральної сукупності розподілена нормально. Потрібно оцінити невідомий параметр – генеральне середнє квадратичне відхилення за “виправленим” вибірковим середнім відхиленням SВ. Поставимо перед собою задачу знаходження довірчого інтервалу, що накриває параметр , з заданою надійністю . Вимагаємо виконання рівності , або . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |