АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Энергетические подуровни

Читайте также:
  1. VI. Биоэнергетические принципы аналитической терапии
  2. Биоэнергетические основы жизни
  3. Биоэнергетические упражнения по установлению связи с землей
  4. Водородоподобные атомы. Энергетические уровни. Квантовые числа.
  5. Возможности эгрегора энергетические и информационные
  6. Гидроэнергетические, лесные, агроклиматические, рекреационные ресурсы
  7. Энергетические величины в фотометрии
  8. Энергетические опасности.
  9. Энергетические основы работы автономных транспортных средств
  10. Энергетические ресурсы и их классификация
  11. Энергетические соотношения в воздушном трансформаторе
Орбитальное квантовое число l Форма электронного облака в подуровне Изменение энергии электронов в пределах уровня
буквенные обозначения цифровые значения
s   сферическая энергия электрона возрастает
p   гантелеобразная  
d   4-х лепестковая розетка  
f   более сложная форма    

Согласно пределам изменений орбитального квантового числа от 0 до (n-1), в каждом энергетическом уровне возможно строго ограниченное число подуровней, а именно: число подуровней равно номеру уровня:

n l Обозначение подуровней Число подуровней
    1s один
  0, 1 2s, 2p два
  0, 1, 2 3s, 3p, 3d три
  0, 1, 2, 3 4s, 4p, 4d, 4f четыре

Сочетание главного (n) и орбитального (l) квантовых чисел полностью характеризует энергию электрона. Запас энергии электрона отражается суммой (n+l).

Так, например, электроны 3d-подуровня обладают более высокой энергией, чем электроны 4s-подуровня:

3d n+1=3+2=5

4s n+1=4+0=4

Порядок заполнения уровней и подуровней в атоме электронами определяется правилом В.М. Клечковского: заполнение электронных уровней атома происходит последовательно в порядке возрастания суммы (n+1).

В соответствии с этим определена реальная энергетическая шкала подуровней, по которой построены электронные оболочки всех атомов:

1s ï 2s2p ï 3s3p ï 4s3d4p ï 5s4d5p ï 6s4f5d6p ï 7s5f6d…

3. Магнитное квантовое число (ml) характеризует направление электронного облака (орбитали) в пространстве.

Чем сложнее форма электронного облака (т.е. чем выше значение l), тем больше вариаций в ориентации данного облака в пространстве и тем больше существует отдельных энергетических состояний электрона, характеризующихся определенным значением магнитного квантового числа.

Математически m l принимает целочисленные значения от -1 до +1, включая 0, т.е. всего (21+1) значений.

Обозначим каждую отдельную атомную орбиталь в пространстве как энергетическую ячейку ð, тогда число таких ячеек в подуровнях составит:

Подуровень Возможные значения m l Число отдельных энергетических состояний (орбиталей, ячеек) в подуровне
s (l=0)   одно
p (l=1) -1, 0, +1 три
d (l=2) -2, -1, 0, +1, +2 пять
f (l=3) -3, -2, -1, 0, +1, +2, +3 семь

Например, шарообразная s-орбиталь однозначно направлена в пространстве. Гантелеобразные орбитали каждого p-подуровня ориентируются по трем осям координат

4. Спиновое квантовое число ms характеризует собственное вращение электрона вокруг своей оси и принимает всего два значения: +1/2 и – 1/2, в зависимости от направления вращения в ту или другую сторону. Согласно принципу Паули, в одной орбитали может расположиться не более 2 электронов с противоположно направленными (антипараллельными)

p- подуровень спинами: .

Такие электроны называютсяспаренными.Неспаренныйэлектрон схематически изображается одной стрелкой: .

Зная емкость одной орбитали (2 электрона) и число энергетических состояний в подуровне (ms), можно определить количество электронов в подуровнях:

Подуровень Число орбиталей Число электронов в подуровне
S    
P    
D    
F    

Можно записать результат иначе: s2 p6d10f 14.

Эти цифры необходимо хорошо запомнить для правильного написания электронных формул атома.

Итак, четыре квантовых числа – n, l, ml, ms – полностью определяют состояние каждого электрона в атоме. Все электроны в атоме с одинаковым значением n составляют энергетический уровень, с одинаковыми значениями n и l – энергетический подуровень, с одинаковыми значениями n, l и m l – отдельную атомную орбиталь (квантовую ячейку). Электроны одной орбитали отличаются спинами.

Учитывая значения всех четырех квантовых чисел, определим максимальное количество электронов в энергетических уровнях (электронных слоях):

Уровень Подуровни Количество электронов
по подуровням суммарное
K n=1 s s2  
L n=2 s, p s2 p6  
M n=3 s, p, d s2 p6 d10  
N n=4 s, p, d, f s2 p6 d10 f14  
       

Большие количества электронов (18,32) содержатся только в глубоко лежащих электронных слоях атомов, внешний электронный слой может содержать от 1 (у водорода и щелочных металлов) до 8 электронов (инертные газы).

Важно помнить, что заполнение электронами электронных оболочек происходит по принципу наименьшей энергии: сначала заполняются подуровни с минимальным значением энергии, затем с более высокими значениями. Эта последовательность соответствует энергетической шкале подуровней В.М. Клечковского.

Электронную структуру атома отображают электронные формулы, в которых указываются энергетические уровни, подуровни и число электронов в подуровнях.

Например, у атома водорода 1H всего 1 электрон, который располагается в первом от ядра слое на s-подуровне; электронная формула атома водорода 1s1.

У атома лития 3Li всего 3 электрона, из них 2 находятся в s-подуровне первого слоя, а 1 помещается во второй слой, который также начинается s-подуровнем. Электронная формула атома лития 1s22s1.

Атом фосфора 15P имеет 15 электронов, расположенных в трех электронных слоях. Помня, что s-подуровень содержит не более 2 электронов, а p-подуровень содержит не более 6, постепенно размещаем все электроны по подуровням и составляем электронную формулу атома фосфора: 1s22s22p63s23p3.

При составлении электронной формулы атома марганца 25Mn необходимо учесть последовательность возрастания энергии подуровней: 1s2s2p3s3p4s3d…

Распределяем постепенно все 25 электронов Mn: 1s22s22p63s23p64s23d5.

Окончательная электронная формула атома марганца (с учетом удаленности электронов от ядра) выглядит так:

1s2 2s22p6 3s23p63d 5 4s2

Электронная формула марганца полностью соответствует положению его в периодической системе: число электронных слоев (энергетических уровней) – 4 равно номеру периода; во внешнем слое 2 электрона, предпоследний слой не завершен, что характерно для металлов побочных подгрупп; общее количество подвижных, валентных электронов (3d54s2) – 7 равно номеру группы.

В зависимости от того, какой из энергетических подуровней в атоме –s-, p-, d- или f- застраивается в последнюю очередь, все химические элементы подразделяются на электронные семейства: s-элементы (H, He, щелочные металлы, металлы главной подгруппы 2-й группы периодической системы); p-элементы (элементы главных подгрупп 3, 4, 5, 6, 7, 8-й групп периодической системы); d-элементы (все металлы побочных подгрупп); f- элементы (лантаноиды и актиноиды).

Электронные структуры атомов являются глубоким теоретическим обоснованием структуры периодической системы, длина периодов (т.е. количество элементов в периодах) непосредственно вытекает из емкости электронных слоев и последовательности возрастания энергии подуровней:

Емкость энергетических подуровней 1s2 2s22p6 3s23p6 4s23d10 4p6 5s24d10 5p6 6s24f145d106p6 7s25f146d5
Количество элементов в периодах I период II период III период IV период V период VI период VII период незаконченный

 

Каждый период начинается s-элементом со структурой внешнего слоя s1 (щелочной металл) и заканчивается p-элементом со структурой внешнего слоя …s2p6 (инертный газ). I-й период содержит только два s-элемента (H и He), II-й и III-й малые периоды содержат по два s-элемента и шесть p-элемента. В IV-м и V-м больших периодах между s- и p-элементами «вклиниваются» по 10 d-элементов – переходных металлов, выделенных в побочные подгруппы. В VI и VII периодах к аналогичной структуре добавляется еще по 14 f-элементов, по свойствам близких соответственно лантану и актинию и выделенных в виде подгрупп лантаноидов и актиноидов.

При изучении электронных структур атомов обратите внимание на их графическое изображение, например:

13Аl 1s2 2s2 2p6 3s2 3p1

s

n=1 p

n=2 1s 2s 2p 3s 3p

n=3

a) б)

применяют оба варианта изображения: а) и б):

Для правильного расположения электронов на орбиталях необходимо знать правило Гунда: электроны в подуровне располагаются так, чтобы их суммарный спин был максимальным. Иными словами, электроны прежде по одному занимают все свободные ячейки данного подуровня.

Например, если необходимо разместить три p-электрона (p3) в p-подуровне, который всегда имеет три орбитали, то из двух возможных вариантов правилу Гунда отвечает первый вариант:

P3
+½+½+½=3/2 +½-½+½=½

 

 

В качестве примера рассмотрим графическую электронную схему атома углерода:

6C·1s22s22p2

Количество неспаренных электронов в атоме – очень важная характеристика. Согласно теории ковалентной связи, только неспаренные электроны могут образовывать химические связи и определяют валентные возможности атома.

Если в подуровне имеются свободные энергетические состояния (незанятые орбитали), атом при возбуждении «распаривает», разъединяет спаренные электроны, и его валентные возможности повышаются:

6C· 1s22s22p3

Углерод в нормальном состоянии 2-х-валентен, в возбужденном – 4-х-валентен. Атом фтора не имеет возможностей для возбуждения (т.к. все орбитали внешнего электронного слоя заняты), поэтому фтор в своих соединениях одновалентен.

Пример 1. Что такое квантовые числа? Какие значения они могут принимать?

Решение. Движение электрона в атоме имеет вероятностный характер. Околоядерное пространство, в котором с наибольшей вероятностью (0,9-0,95) может находиться электрон, называется атомной орбиталью (АО). Атомная орбиталь, как любая геометрическая фигура, характеризуется тремя параметрами (координатами), получившими название квантовых чисел (n, l, m l). Квантовые числа принимают не любые, а определенные, дискретные (прерывные) значения. Соседние значения квантовых чисел различаются на единицу. Квантовые числа определяют размер (n), форму (l) и ориентацию (ml) атомной орбитали в пространстве. Занимая ту или иную атомную орбиталь, электрон образует электронное облако, которое у электронов одного и того же атома может иметь различную форму (рис. 1). Формы электронных облаков аналогичны АО. Их также называют электронными или атомными орбиталями. Электронное облако характеризуется четырьмя числами (n, l, m1 и m5).

 

Таблица 6.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)