АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методика оценки и практического применения результатов корреляционного анализа

Читайте также:
  1. B) должен хорошо знать только физико-химические методы анализа
  2. D.2 Оценка практического экзамена на 1-й и 2-й уровни – руководящие указания по взвешенным процентам
  3. E. интерпретирование аналитических результатов по конкретно заданным вопросам правоохранительных органов или суда.
  4. II Методика виконання курсової роботи.
  5. II. ИСТОРИЯ НАШЕЙ КАНАЛИЗАЦИИ
  6. II. ПОРЯДОК И МЕТОДИКА ПРОВЕДЕНИЯ ЭКЗАМЕНА
  7. III. Методика расчета эффективности электрофильтра.
  8. IV. Правила подсчета результатов
  9. IV. Схема анализа внеклассного мероприятия
  10. SCADA. Назначение. Возможности. Примеры применения в АСУТП. Основные пакеты.
  11. V этап. Оценка результатов
  12. V этап. Оценка результатов

Для того чтобы убедиться в надежности показателей связи и правомерности их использования для практической цели, необходимо дать им статистическую оценку. Для этого используются критерий Стьюдента (), критерий Фишера (F-отношение), средняя ошибка аппроксимации (), коэффициенты множественной корреляции () и детерминации ( ).

Надежность коэффициентов корреляции, которая зависит от объема исследуемой выборки данных, проверяется по критерию Стьюдента:

 

Если расчетное значение выше табличного, то можно сделать заключение о том, что величина коэффициента корреляции является значимой. Табличные значения находят по таблице значений критериев Стьюдента. При этом учитываются количество степеней свободы и уровень доверительной вероятности (в экономических расчетах обычно 0,05 или 0,01).

Надежность уравнения связи оценивается с помощью критерия Фишера, расчетная величина которого сравнивается с табличным значением. Если , то гипотеза об отсутствии связи между исследуемыми показателями отвергается.

Для оценки точности уравнения связи рассчитывается средняя ошибка аппроксимации. Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической (эмпирической), тем меньше ее величина, а это свидетельствует о правильности подбора формы уравнения связи. В нашем примере она составляет 0,0364, или 3,64%. Учитывая, что в экономических расчетах допускаемая погрешность находится в пределах 5-8%, можно сделать вывод, что исследуемое уравнение связи довольно точно описывает изучаемые зависимости. С такой же небольшой погрешностью будет делаться и прогноз уровня рентабельности поданному уравнению.

О полноте уравнения связи можно судить по коэффициентам множественной корреляции и детерминации. Если их значения близки к 1, значит, в корреляционную модель удалось включить наиболее существенные факторы, на долю которых приходится основная вариация результативного показателя.

Коэффициент множественной корреляции равен 0,92, коэффициент множественной детерминации – 0,85. Это значит, что изменение уровня рентабельности на 85% зависит от изменения исследуемых факторов, а на долю неучтенных факторов приходится 15% вариации результативного показателя. Значит, данное уравнение связи можно использовать для практических целей, а именно:

а) расчета влияния факторов на прирост результативного показателя;

б) подсчета резервов повышения уровня исследуемого показателя;

в) планирования и прогнозирования его величины.

Влияние каждого фактора на изменение (отклонение от плана) результативного показателя рассчитывается следующим образом:

 

 

Допустим, что уровень материалоотдачи на анализируемом предприятии по плану на отчетный год – 2,5 руб., фактически – 2,4 руб. Из-за этого уровень рентабельности продукции ниже планового на 0,365%.

 

Аналогичным образом подсчитывают резервы роста результативного показателя. Для этого планируемый прирост факторного показателя умножают на соответствующий ему коэффициент регрессии в Уравнении связи:

 

 

Предположим, что в следующем году намечается рост материалоотдачи с 2,4 до 2,7 руб. За счет этого рентабельность повысится на

 

Подобные расчеты делаются по каждому фактору с последующим обобщением результатов анализа.

Результаты многофакторного регрессионного анализа могут быть использованы также для планирования и прогнозирования уровня результативного показателя. С этой целью необходимо в полученное уравнение связи подставить плановый (прогнозный) уровень факторных показателей:

Таким образом, многофакторный корреляционный анализ имеет важную научную и практическую значимость. С установлением места и роли каждого фактора в формировании уровня исследуемых показателей точнее обосновываются планы и управленческие решения, объективнее оцениваются итоги деятельности предприятий и полнее определяются внутрихозяйственные резервы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)