АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Отношения Фибоначчи в геометрии

Читайте также:
  1. II. Доказательство некоторых понятий и фактов геометрии Лобачевского
  2. IV. Практическое применение геометрии Лобачевского
  3. N-декомпозируемые отношения. Пример декомпозиции. Зависимость проекции/соединения.
  4. XV. НЕДИПЛОМАТИЧЕСКИЕ ОТНОШЕНИЯ
  5. А)соотношения атмосферных осадков и испарения
  6. Анализ соотношения темпов роста производительности труда и средней заработной платы
  7. Арабо-израильские отношения в 1990-е – начале 2000-х гг.: этапы и особенности переговорного процесса, проблемы урегулирования.
  8. Арктическая ориентированность-важный элемент в отношениях между Россией и Норвегией.
  9. Безусловное принятие - принцип без принятия которого все попытки наладить отношения с ребенком оказываются безуспешными.
  10. Близкие взаимоотношения и благополучие
  11. В исчислении доменов областью определения переменных являются не отношения, а домены.
  12. В результате неправильного отношения верующих к Духу Святому приходит разочарование.

Существование отношения Фибоначчи ФИ в геометрии очень хо­рошо известно. Однако подходящий для инвесторов способ приме­нения этого отношения как геометрического инструмента к движе­нию биржевых цен с использованием ФИ-спиралей и ФИ-эллип-сов до настоящего времени не публиковался. Чтобы применять ФИ-спирали и ФИ-эллипсы как аналитические инструменты, требуются квалификация программиста и сила компьютеров.

Поскольку компьютерные мощности сегодня легко доступны, препятствием является отсутствие не железа, а, скорее, некоторых знаний и соответствующего программного обеспечения.

Полностью готовый к работе пакет программ, прилагаемый к данной книге, позволяет каждому заинтересованному читате­лю/инвестору прослеживать приводимые примеры и генериро­вать подобные сигналы в торговле в режиме реального времени.

ФИ-спираль и ФИ-эллипс имеют необычные свойства, кото­рые в соответствии с отношением Фибоначчи ФИ находятся в двух измерениях: цена и время. Весьма вероятно, что интегрирование ФИ-спирали и ФИ-эллипса намного повысит уровень интерпрета­ции и использования отношения Фибоначчи. До сих пор отноше­ние ФИ Фибоначчи в основном использовалось как инструмент для измерения коррекций и расширений ценовых колебаний. Прогнозы времени интегрировались редко, потому что они не представлялись столь же надежными, как анализ цен. Но с включением в геометри­ческий анализ ФИ-спиралей и ФИ-эллипсов обе части — и цено­вой, и временной анализ — могут комбинироваться правильно.

Чтобы лучше понять, как ФИ Фибоначчи геометрически встраивается в ФИ-спирали и ФИ-эллипсы, начнем с описания золотого сечения линии и прямоугольника и их соответствующих отношений к ФИ.

Греческий математик Евклид Мегарский (450—370 гг. до н. э.) — первый ученый, написавший о золотом сечении и, таким образом, сосредоточившийся на анализе прямой линии (рисунок 1.3).

Линия АВ длиной L разделена на два отрезка точкой С. Пусть длины АС и СВ будут равны а и b соответственно. Если С являет-

 

 

ОТНОШЕНИЯ ФИБОНАЧЧИ • 9

Рисунок 1.3 Золотое сечение линии. Источник: FAM Research, 2000.

ся такой точкой, что частное L-т- а равно частному а -s-b, то С золо­тое сечение АВ. Отношение L -ь а или а -^ b называется золотым от­ношением.

Другими словами, точка С делит линию АВ на два отрезка та­ким образом, что отношения этих отрезков составляют 1,618 и 0,618; мы легко узнаем эти два числа по нашему анализу ряда сум­мирования Фибоначчи, как ФИ Фибоначчи и его обратное значе­ние ФИ'.

Перемещаясь от одной колыбели науки к другой — из Древней Европы в Древнюю Африку или из Древней Греции в Древний Египет, мы узнаем, что в Великой Пирамиде Гизы прямоугольный этаж палаты фараона также иллюстрирует золотое сечение.

Золотое сечение прямоугольника лучше всего продемонстри­ровать, начертив квадрат, геометрическую конфигурацию, послу­жившую фундаментом Пирамиды Гизы. Этот квадрат можно за­тем преобразовать в золотой прямоугольник, как это схематично показано на рисунке 1.4.

Сторона АВ квадрата ABCD на рисунке 1.4 делится пополам. Чертится дуга круга с центром в точке Е и радиусом ЕС, отсекаю­щая продление АВ в точке F. Перпендикулярно AF чертится ли­ния FG, пресекающая продление DC в точке G. AFGD — золотой прямоугольник. Согласно формальному определению, геометри­ческое представление золотого сечения в прямоугольнике означа­ет, что длина прямоугольника этой формы в 1,618 раз больше, чем его ширина. И вновь появляется отношение Фибоначчи ФИ, на сей раз в пропорциях золотого прямоугольника.

Держа в уме представление отношения Фибоначчи ФИ в одно­мерной (линия) и двумерной (прямоугольник) геометрии, можно перейти к более сложным геометрическим объектам. Они подве­дут ближе к инструментам, которые мы хотим применять для ана­лиза параметров времени и цены фондовых и фьючерсных рын­ков.

 

 

10 • ОСНОВНЫЕ ПРИНЦИПЫ ФИБОНАЧЧИ

Рисунок 1.4 Золотое сечение прямоугольника. Источник: FAM Research, 2000.

Единственной математической кривой следующей модели есте­ственного роста является спираль, выраженная в таких природных феноменах, как Spira mirabilis или раковина наутилуса. ФИ-спираль называют самой красивой математической кривой. Этот тип спира­ли часто встречается в природе. Ряд суммирования Фибоначчи и зо­лотое сечение, представленное выше как его геометрический экви­валент, очень хорошо ассоциируются с этой замечательной кривой.

На рисунке 1.5 показана рентгенограмма раковины камерного наутилуса ("кораблика"). Последовательные камеры наутилуса построены, следуя форме ФИ-спирали. По мере роста раковины размер камер увеличивается, но их форма остается неизменной.

Для демонстрации геометрии ФИ-спирали лучше всего ис­пользовать золотой прямоугольник как основание для геометри­ческого анализа. Это показано схематично на рисунке 1.6.

Частное от деления длины на высоту прямоугольника ABCD на рисунке 1.6 можно вычислить. Как мы узнали ранее, оно соста­вляет АВ-г-ВС = ФИ-Н = 1,618. Через точку Е, также называемую золотым сечением АВ, проводится линия EF, перпендикулярная АВ, отрезающая от прямоугольника квадрат AEFD. Остающийся прямоугольник EBCF — золотой прямоугольник. Если отделить квадрат EBGH, то остающаяся фигура HGCF также будет золо­тым прямоугольником. Этот процесс можно повторять неопреде­ленно долго, пока конечный прямоугольник О не станет настоль­ко маленьким, что будет неотличим от точки.

Конечная точка О называется полюсом равноугольной спира­ли, которая проходит через золотые сечения D, Е, G, J и так далее.

 

ОТНОШЕНИЯ ФИБОНАЧЧИ • 11

Рисунок 1.5 ФИ-спираль, представленная в раковине наутилуса.

Источник: The Divine Proportion, H. E. Huntley (New York: Dover, 1970), p. iv. Перепечатано с разрешения.

D F J С

Рисунок 1.6 Геометрия ФИ-спирали. Источник: FAM Research, 2000.

 

 

12 • ОСНОВНЫЕ ПРИНЦИПЫ ФИБОНАЧЧИ

Стороны прямоугольника почти, но не полностью касательные кривой.

Отношение ФИ-спирали кряду Фибоначчи очевидно из рисун­ка 1.6, потому что ФИ-спираль проходит по диагонали через про­тивоположные углы последовательных квадратов, например, DE, EG, GJ и так далее. Длины сторон этих квадратов формируют ряд Фибоначчи. Если самый маленький квадрат имеет сторону длиной d, смежный квадрат должен также иметь сторону длиной d. Следу­ющий квадрат имеет сторону длиной 2d (вдвое длиннее d), следу­ющий 3d (втрое длиннее d), формируя ряд Id, 2d, 3d, 5d, 8d, 13d... который является хорошо известной последовательностью Фибо­наччи: 1—1—2—3—5—8—3— и так далее до бесконечности.

Спираль не имеет конечной точки. При бесконечном росте на­ружу (или внутрь) ее форма остается неизменной. Два сегмента спирали идентичны по форме, но отличаются по размеру точно на коэффициент ФИ. Все спирали, чьи темпы роста являются элемен­тами ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854-11,090-и так далее, будут в контексте этой книги называться ФИ-спира-лями.

ФИ-спираль — связующее звено между рядом суммирования Фибоначчи, вытекающим из него отношением Фибоначчи ФИ, и волшебством природы, которое мы видим вокруг нас.

В дополнение к ФИ-спирали, в природе можно встретить и другие важные геометрические кривые. Из них наиболее сущест­венные для цивилизации — горизонт океана, след метеора, пара­бола водопада, дуга перемещения солнца, полумесяц и, наконец, полет птицы. Многие из этих естественных кривых могут быть геометрически смоделированы с использованием эллипсов.

Эллипс — математическое выражение овала. Каждый эллипс можно точно описать с помощью всего лишь нескольких характе­ристик (рисунок 1.7).


S,S2 на рисунке 1.7 — длина большой оси эллипса. S3S4 — дли­на малой оси эллипса. Эллипс теперь определяется уравнением

 

 

Для нас представляет интерес (в контексте анализа Фибонач­чи) отношение главной и малой оси эллипса, выраженное на ма­тематическом языке в следующей формуле

 

 

ОТНОШЕНИЯ ФИБОНАЧЧИ • 13

Рисунок 1.7 Геометрия ФИ-эллипса. Источник: FAM Research, 2000.

Эллипс превращается в ФИ-эллипс во всех тех случаях, где от­ношение большой оси к малой оси эллипса является элементным числом ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854- и так далее. Круг — специальный тип ФИ-эллипса, в котором а = Ь и от­ношение а-=-Ь= 1.

ФИ-эллипсы предпочтительнее всех других возможных эллип­сов (с отношениями главных осей, деленных на малые оси, ины­ми, чем числа ряда ФИ), поскольку эмпирические исследования показали, что люди находят приближения ФИ-эллипсов визуаль­но значительно более удовлетворительными.

Когда участники исследовательского проекта сталкивались с различными формами эллипсов и их спрашивали об уровне ком­форта, пробное эмпирическое исследование дало результаты, по­казанные в Таблице 1.1.

Три наблюдателя из четырех предпочли эллипсы, имеющие оси, чьи отношения равны отношению ФИ-эллипса (1,618) или так близко приближены к ФИ-эллипсу, чтобы были почти от не­го неотличимы.

После этого оптимистического обзора перейдем ко второй главной части нашего теоретического представления основных инструментов Фибоначчи.

К каким выводам можно прийти после того, что мы уже рас­сказали? И какие выводы сделал Эллиот, чтобы интегрировать ряд

 

 

14 • ОСНОВНЫЕ ПРИНЦИПЫ ФИБОНАЧЧИ

Таблица 1.1 Предпочтения ФИ-эллипсов Отношение Главная ось - малая ось a-b Процентная доля предпочтения
1,000 1,2
1,205   0,6  
1,250   8,3  
1,333   14,7  
1,493   42,4  
1,618   16,7  
1,754   13,1  
2,000   1,6  

Источник: The Divine Proportion, H. E. Huntley (New York: Dover, 1970) p. 65. Перепечатано с разрешения.

суммирования Фибоначчи и ФИ Фибоначчи с силами, которые двигают международные рынки?


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)