АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обратная матрица. Определение 6. Квадратная матрица называется невырожденной, если ее определитель не равен нулю

Читайте также:
  1. Nikon D7100 - матрица APS-C в идеальном оформлении
  2. SWOT- матрица
  3. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  4. Анализ матричных данных (матрица приоритетов)
  5. Б1 2. Линейный оператор в конечномероном пространстве, его матрица. Характеристический многочлен линейного оператора. Собственные числа и собств векторы.
  6. Билет 11. Различные уравнения прямой в пространстве. Матрица перехода к новому базису.
  7. Билет 13. Линейные операторы. Матрица линейного оператора.
  8. Билет 23. Матрица SWOT – анализа.
  9. Билет 27 Ортогональный оператор и его матрица в ортонормированном базисе
  10. Билет 27. Жорданов базис и жорданова матрица линейного оператора в комплексном пространстве.
  11. Билет 32. Сопряженный оператор. Существование и единственность. Матрица сопряженного оператора.
  12. Билет26 Самосопряженный оператор и его матрица в ортонормированном базисе.

 

Определение 6. Квадратная матрица называется невырожденной, если ее определитель не равен нулю.

Только для квадратных невырожденных матриц А вводится понятие обратной матрицы (обозначают ее ).

Определение 7. Матрица называется обратной для квадратной невырожденной матрицы А, если , где Е – единичная матрица того же порядка, что и матрица А.

Один из способов нахождения обратной матрицы состоит в следующем. Для матрицы А вычисляют определитель и для всех ее элементов – их алгебраические дополнения . Тогда

 

Следует обратить внимание на то, что алгебраические дополнения, соответствующие элементам данной строки, располагаются в столбце, номер которого равен номеру строки.

Пример. Найти обратную матрицу для матрицы

Находим определитель матрицы :

.

Вычисляем алгебраические дополнения:

 

Таким образом

 

 

Проверка.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)