АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Функция Мебиуса

Читайте также:
  1. I Функция
  2. IV. ФУНКЦИЯ И СОСЕДНИЕ КАТЕГОРИИ (ЧИСЛО КАК СУЖДЕНИЕ, УМОЗАКЛЮЧЕНИЕ, ДОКАЗАТЕЛbСТВО И ВЫРАЖЕНИЕ)
  3. А) Производственная функция б) Вспомогательный график
  4. Агрегированная производственная функция (aggregate produc-
  5. АДАПТАЦИОННО-ТРОФИЧЕСКАЯ ФУНКЦИЯ
  6. Административная функция
  7. Адресная функция
  8. Аксиомы ординалистского подхода. Функция полезности и кривые безразличия потребителя. Свойства кривых безразличия. Предельная норма замещения
  9. Аналитическая функция
  10. Архитектура, управляемая событиями. Типы данных Win32. Оконная процедура (функция). Оконный класс.
  11. Б) система; г) функция.
  12. Барьерно-защитная функция

Пусть (X, £) – конечное частично упорядоченное множество. Рассмотрим последовательность функций Pn: X´X® Z, определенных при n =0 и n =1 по формулам:

А при n≥2:

Pn(x,y) = |{(x1 , x2 , ×× ×, xn-1): x< x1 < x2 < ××× < xn-1 <y}|.

Определение 1. Функцией Мебиуса m: X´X®Z называется функция, определенная по формуле

.

Определение 2. Пусть X={ x1 , x2 , ×××, xn} – конечное частично упорядоченное множество, матрицей смежности называется матрица A, имеющая коэффициенты

Лемма 1. Пусть X={ x1 , x2 , ×××, xn} – конечное частично упорядоченное множество, A – матрица смежности. Тогда матрица M, коэффициенты которой равны значениям m(xi, xj), будет обратной к матрице A.

Доказательство. Пусть Id – единичная матрица. Положим Q=A-Id. Тогда A=Id+Q. Откуда

A-1 = Id - Q + Q2 - Q3 + ××× = .

Легко видеть, что коэффициенты матрицы Qk равны Pk(xi,xj), откуда , в силу . Что и требовалось доказать.

Пример 1. X=[n].

, .

Отсюда получаем m(i,i)=1, m(i,i+1)=-1. Остальные значения функции Мебиуса равны 0.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)