Формула обращения
Теорема 1. Пусть (X, £) – конечное частично упорядоченное множество. Тогда для любых функций f, g: X® R равносильны следующие свойства
(1) ;
(2) .
Доказательство. Пусть A – матрица смежности частично упорядоченного множества (X, £). Тогда выполнение равенства (1) равносильно соотношениям g(xi)=Sj aij f(xj). Поскольку это равносильно равенству g=Af, эквивалентного равенству f=A-1g, то получаем, что (1) верно тогда и только тогда, когда верно (2).
Рассматривая частично упорядоченное множество с двойственным отношением порядка, получаем следующую теорему.
Теорема 2. Пусть (X, £) – конечное частично упорядоченное множество. Тогда для любых функций f, g: X® R равносильны следующие свойства
(1) ;
(2) .
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | Поиск по сайту:
|