АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соотношение численности мужчин и женщин по возрастным группам в 1959-2001 гг

Читайте также:
  1. IV. Особенности правового регулирования труда беременных женщин
  2. V. Экономико-правовая концепция Трудового кодекса о регулировании труда женщин
  3. А. Базовое системное соотношение.
  4. Б. Системное соотношение с измененным основным аргументом.
  5. Блокирование материнского инстинкта женщин
  6. Блокирование материнского инстинкта женщин.
  7. В чем нуждаются женщины
  8. Ведущие медико-социальные проблемы здоровья женщин. Организация акушерско-гинекологической помощи, амбулаторный и стационарный этапы.
  9. Взаимоотношения и психология женщины.
  10. Взгляды Фрейда на природу женщины.
  11. Виола лишь снова переглянулась с Нейтаном и отвернулась в сторону женщины, которая рассказывала о правилах на балу.
  12. Возможна ли настоящая дружба между мужчиной и женщиной

(число женщин на 1000 мужчин соответствующей возрастной группы)

Показатель            
Все население            
в т.ч. в возрасте, лет:            
0-2            
3-6            
7-15            
16-19            
20-29            
30-39            
40-49            
50-54            
55-59            
60 лет и старше            

 

5.3 СРЕДНИЕ ВЕЛИЧИНЫ И ПОКАЗАТЕЛИ ВАРИАЦИИ

Средней величиной называется обобщающая характеристика совокупности однородных общественных явлений по одному количественному признаку в определенных условиях места и времени.

Средняя величина обобщает данные о величине признака у отдельных единиц изучаемой совокупности и позволяет выявить характерный, типичный уровень признака для единиц этой совокупности.

Уровень признака у отдельных единиц совокупности складывается под влиянием разнообразных условий (факторов), одни из них являются общими для всех единиц, другие - различными, случайными (индивидуальными) и определяют различный уровень у отдельных единиц.

В средней величине, исчисленной на основе данных о большем числе единиц (массовых данных), колебания о величине признака, вызванные случайными причинами, погашаются и проявляется общее свойство для всей совокупности.

Средняя величина всегда именованная, она имеет ту же размерность, что и признак у отдельных единиц совокупности.

Объективность и типичность статистической средней могут быть обеспечены лишь при определенных условиях:

1) средняя должна вычисляться для качественно однородной совокупности в отношении усредняемого признака;

2) для исчисления средней должны быть использованы не единичные, а массовые данные, ибо только тогда взаимопогашаются возможные случайные отклонения.

В статистической практике применяются несколько видов средних величин: средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя хронологическая. Каждая средняя может быть исчислена как простая или взвешенная (веса или частота - численность единиц совокупности, имеющих одинаковый размер того или иного усредняемого признака).

Исчисление средней величины - это определение отношения общего объема признака к численности единиц, которым присущ этот признак.

Средняя арифметическая простая:

Средняя арифметическая исчисляется как сумма отдельных значений признака х12, x3,..., хn, деленная на их число n.

Если, предположим, нужно вычислить средний возраст лиц, совершивших хулиганство, суммируются возрастные показатели каждого лица и сумма делится на число единиц совокупности. Однако этот простейший и всем известный способ определения средней (если наименование средней не упоминается, это значит что речь идет о средней арифметической) применяется лишь тогда, когда каждая единица совокупности имеет различные значения изучаемого признака, т.е. его значения не повторяются В приведенном примере это значило бы, что в изучаемой совокупности всегда обнаруживаются варианты признака, одинаковы для целого ряда единиц этой совокупности. Число этих одинаковых вариантов называется весами, или частотами. В этих случая вычисляется не простая, а взвешенная средняя арифметическая. (с учетом весов конкретных вариантов признака):

,

где x— варианты и f— веса. Это и есть формула средней арифметической взвешенной.

 

Вычисляя средний возраст осужденных в ВК для несовершеннолетних, в которой содержатся лица 15, 16, 17 и 18 л.

Предположим, что в ВК содержится 1000 осужденных и они распределяются по возрастным группам следующим образом:

 

Возраст (варианты) Число лиц (вес каждого варианта)
  600 Всего 1000 осужденных

Действительный средний возраст изучаемой совокупности равен 17,25 года (15x100+16x150+17x150+18x600)/1000=17,25.

 

Средние арифметические находят самое широкое применение при анализе правонарушений, результатов деятельности по соци­альному контролю над ними, оценке работы правоохранительных органов и т.д.

В практике иногда встречается необходимость вычисления сред­ней величины не из конкретных численных значений изучаемо­го признака, а из значений признака, сгруппированных в интер­валы («от——до»)

Рассмотрим условный пример.

 

Сроки наказания Число осужденных
до 1 года от 1 года до 3 лет от 3 лет до 5 лет от 5 лет до 10 лет от 10 лет до 15 лет    

 

Определяем серединные значения интервалов: до 1 года—0,5; от 1 года до 3 лет—2; от 3 до 5 лет—4; от 5 до 10 лет—7,5; от 10 до 15 лет—12,5. Теперь определяем среднюю величину, т. е. серединные значения интервалов, умножаем на веса, после чего сумму произведений делим на сумму весов:

.

 

Средняя гармоническая взвешенная. Данная форма используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель. Рассмотрим расчет средней урожайности, являющейся одним из основных показателей эффективности производства в агробизнесе.

 

Таблица 5.3.1


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)