АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Средняя гармоническая простая

Читайте также:
  1. D – средняя осадка судна до посадки на мель, м.
  2. А. Средняя квадратическая погрешность функции измеренных величин.
  3. Б. СРЕДНЯЯ ОРДА
  4. Вывод: средняя частота пульса пациентов изучаемой группы составляет 121,9 ударов в минуту, вариабельность пульса малая.
  5. Гармоническая простая
  6. Закон Максвелла распределения молекул по абсолютным значениям скоростей. Средняя, средняя квадратичная и наиболее вероятная скорость молекул.
  7. Кардиналистская концепция полезности и потребительского поведения: общая средняя и предельная полезность. Условие максимизации общей полезности покупателем.
  8. Непростая, но типичная история
  9. Плоская гармоническая волна
  10. Повышение нормы внесения дрожжей - самая простая возможность ускорить брожение без отрицательных последствий.
  11. Показатель длительности Средняя дебиторская задолженность
  12. Принцип детального равновесия. Среднее число столкновений и средняя длина свободного пробега молекул. Вакуум.

Средняя гармоническая - это отношение числа вариантов признака к сумме обратных их значений. Она исчисляется по формуле

,

где х — отдельные варианты; n—их число.

Для иллюстрации области ее применения воспользуемся упрощен­ным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и от­правкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 8 мин., второй - 14 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у ра­ботников равна?

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. (8+14):2=11 мин. Проверим обоснованность такого подхода на примере одного часа работы. За этот час первый работник обрабатывает 7,5 заказов (60:8), второй - 4,3 заказа (60:14), что в сумме составляет 11,8 заказа. Если же заменить инди­видуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае умень­шится:

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (например, за час) разделить на общее число обрабо­танных за этот интервал двумя работниками заказов:

Если теперь мы заменим индивидуальные значения их средней ве­личиной, то общее количество обработанных за час заказов не изменится:

Подведем итог: средняя гармоническая не взвешенная может ис­пользоваться вместо взвешенной в тех случаях, когда значения wi для еди­ниц совокупности равны (рабочий день у сотрудников одинаковый).

Средняя геометрическая

Этот вид средней вычисляется для установления средних по­казателей темпов роста рядов динамики.

Средняя геометрическая исчисляется путем извлечения корня степени п из произведений отдельных значений признака:

где — средняя геометрическая, n — число значений признака, а П — знак перемножения.

Предположим, годовые темпы роста продукции какого-либо предприятия составили в 1998 г. — 1,036; в 1999. — 1,069; в 2000г. — 1,084 и в 2001г. — 1,090. Тогда среднегодовой темп за четырехлетие



 

 

Необходимо иметь в виду, что средняя геометрическая может вычисляться лишь в том случае, когда на протяжении всего пе­риода происходит либо непрерывный рост, либо непрерывное па­дение. При пилообразном характере уровней ряда (т.е. их росте и па­дении — 1,05; 1,1; 1,15; 1,07; 1,3) средний темп роста имел бы фик­тивное значение.

В заключение отметим, что для вычисления рассмотренных вы­ше степенных средних необходимо использовать все имеющиеся зна­чения признака.

В ряде случаев можно определить среднюю величину без про­изводства вычислений, как бы визуально. Для этого используют такие средние величины, как мода и медиана.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)