Перевод правильной десятичной дроби в другую позиционную систему счисления
↑ Наверх
Правило перевода правильной десятичной дpоби F в систему счисления с основанием q.
Необходимо F умножить на q, записанное в той же десятичной системе, затем дробную часть полученного произведения снова умножить на q, и т. д., до тех пор, пока дробная часть очередного произведения не станет равной нулю, либо не будет достигнута требуемая точность изображения числа F в q -ичной системе. Представлением дробной части числа F в новой системе счисления будет последовательность целых частей полученных произведений, записанных в порядке их получения и изображенных одной q -ичной цифрой [2].
Если требуемая точность перевода числа F составляет k знаков после запятой, то предельная абсолютная погрешность при этом равняется q -(k +1)/ 2.
Пример 3.3. Переведем число 0,42 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ:
а) 0,4210= 0,011012 с предельной абсолютной погрешностью 2-6/2=2-7;
б) 0,4210=0,3278 с предельной абсолютной погрешностью 8-4/2=2-13;
в) 0,4210=0,6B852 с предельной абсолютной погрешностью 16-5/2=2-21.
Для чисел, имеющих целую и дробную части, перевод из десятичной системы счисления в другую осуществляется отдельно для каждой из частей, а затем складываются. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Поиск по сайту:
|