|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Приклади. 1. Множина всіх векторів трьохвимірного простору R, є групоїдом, якщо під алгебраїчною розуміти операцію знаходження векторного добутку двох векторів1. Множина всіх векторів трьохвимірного простору R, є групоїдом, якщо під алгебраїчною розуміти операцію знаходження векторного добутку двох векторів. 2. Множина всіх підстановок n -го степеня з операцією множення підстановок утворює групоїд. 3. Якщо в множині R всіх дійсних чисел розглядати тільки операцію додавання чисел, то сукупність є групоїдом. Як відомо, операція знаходження векторного добутку двох векторів є асоціативною і комутативною, відносно неї не існує нейтрального елемента. Операція множення підстановок є асоціативною, але не є комутативною, відносно неї існує одиничний елемент і для кожної підстановки — обернена. Операція додавання дійсних чисел є асоціативною і комутативною, відносно неї існує нульовий елемент і для кожного числа — протилежне. Як бачимо, в деяких групоїдах алгебраїчна операція насправді задовольняє тим чи іншим умовам. Це дає можливість прокласифікувати групоїд в залежності від того, яким умовам задовольняє алгебраїчна операція групоїду. Ми зупинимось тільки на двох класах групоїдах — півгрупах і групах. Півгрупа — це групоїд, алгебраїчна операція якого є асоціативною. Група — це півгрупа, в якій існує одиничний елемент і для кожного елемента — обернений. Зараз дамо детальніші означення цих об’єктів і вивчимо їх деякі властивості. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |