АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Современная микроэлектроника и перспективы ее развития

Читайте также:
  1. II. Лесопромышленный комплекс РФ: современное состояние, перспективы развития.
  2. IV. Профсоюзы Франции: возникновение и особенности развития (XIX-начало XX вв.)
  3. А) значение речи для психического развития и причины речевых дефектов.
  4. Акмеологический подход в исследовании развития профессионала
  5. АКМЕОЛОГО-ПЕДАГОГИЧЕСКИЕ ОСНОВЫ ЛИЧНОСТНОГО И ПРОФЕССИОНАЛЬНОГО РАЗВИТИЯ
  6. Анализ геоэкономических особенностей развития Норвегии.
  7. Анализ современного состояния и тенденций развития сценарной культуры
  8. Анализ факторов развития отрасли за 3-5 последних лет
  9. Анализ экономического развития Норвегии.
  10. Аналитическая стратегия развития философии
  11. Аномалии развития скелета
  12. АНОРЕКТАЛЬНЫЕ ПОРОКИ РАЗВИТИЯ

Перед микроэлектроникой стоят задачи:

1. Повышать качество уже выпускаемых изделий – надежность, снижение стоимости, рост % выхода.

2. Совершенствовать параметры изделий.

Для этого нужно:

1) Увеличивать степень интеграции

2) Увеличивать быстродействие

3) Снижать рассеиваемую мощность

Это позволит увеличить объем обрабатываемой информации.

Важнейший вопрос – увеличение степени интеграции, что сводится к уменьшению размеров элементов конструкции ИС. Существует два вида ограничений:

а) физические

б) технологические.

Статистическая воспроизводимость технологического процесса.

Пусть l – размер конструктивного элемента.

При l >> a, a – атомный размер, постоянная решетки (а ≅ 3Å)дискретность атомов не проявляется, тогда размер l макроскопичен. Материал рассматривается, как непрерывная среда.

При la размер микроскопичен. Каждый атом или небольшая группа атомов рассматривается как самостоятельный объект.

При l = (10 –100) a объект мезоскопичен. Свойства такого объекта статистически неустойчивы. Или, другими словами: мезоскопические эффекты связаны со статической неопределенностью свойств изучаемых объектов.

Перспективы развития технологии цифровых ИС.

ГОДЫ              
Мин. размер, мкм 0.50 0.35 0.25 0.18 0.13 0.10 0.07
Площадь ИС (логика), см2 2.5 4.0 6.0 8.0 10.0 12.5 16.2
Площадь ИС (память), см2 1.3 2.0 3.2 5.0 7.0 10.0 14.0
Плотность дефектов, 1/см2 0.1 0.06 0.03 0.01 <0.01 <0.01 <0.01
Стоимость обра-ботки, USD/ см2 4.0 3.9 3.8 3.7 3.6 3.5 <3.5
Стоимость лито-графии, USD/см2 1.4 1.4 1.3 1.3 1.3 1.2 <1.2

 

4. Технологический процесс изготовления ИС.

Производственный процесс изготовления ИС можно разделить на три участка: участок формирования структур на пластине, участок сборки и участок выходного контроля. Технологические процессы изготовления изделий в большинстве своем непрерывно- дискретные. Непрерывные технологические процессы не могут быть прерваны до их окончания. В случае их прерывания раньше окончание процесса в большинстве случаев изделие уходит в брак. Например, аварийное отключение печей при проведении диффузионных процессов практически приводит к браку всей партии пластин. Дискретные технологические процессы разделяются на отдельные операции. Эти процессы можно останавливать на определенное для каждого процесса время и после некоторого перерыва можно продолжать далее. Последствия такого перерыва в ходе процесса практически не отражаются на качестве изготовляемых изделий. Технологический процесс изготовления ИС также принадлежит к непрерывно- дискретному, так как состоит из двух самостоятельных непрерывно-дискретных процессов изготовления полупроводниковых кристаллов со структурой ИС и их сборки. Изготовление структуры на кристалле включает непрерывные и дискретные процессы химической обработки пластины, процессы диффузии, литографии, напыления алюминия, разделения пластин на кристаллы. Каждый из этих процессов включает ряд технологических и контрольных операций.

Последовательность технологических операций при изготовлении ИС на пластине кремния с диэлектрической изоляцией.

Современные технологические процессы изготовления ИС очень сложны. Анализ процессов изготовления показывает, что они проводятся при температурах, изменяющихся в диапазоне от – 100оС(криогенное травление) до +1100оС (окисление, диффузия, отжиг после ионной имплантации и др.), при давлении от атмосферного до 10-7 мм.рт.ст. Столь широкие диапазоны вызваны необходимостью проведения с исходными материалами различных физических и химических процессов для получения структур ИС с удовлетворяемыми.

 

5.Физические основы технологии получения тонких пленок


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)