АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Мультипликативные модели регрессии и их линеаризация

Читайте также:
  1. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  2. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  3. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  4. Аддитивная и мульпликативная модели временного ряда
  5. Адекватность трендовой модели
  6. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки адекватности парной регрессионной модели.
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  11. Альтернативные модели потребления.
  12. Анализ дискреционной налогово-бюджетной и кредитно-денежной политики с помощью модели «IS-LM».

Уравнение (3.1) называют аддитивным, тогда как уравнение вида

у =a0 х 1a1 х 2a2 ´…´ х mam (4.1)

называется мультипликативным.

Коэффициенты аj являются коэффициентами эластичности.

Например, при исследовании спроса на мясо получено уравнение

где у – количество спрашиваемого мяса, х 1 – цена, х 2 – доход. Рост цен на 1% при том же доходе вызывает снижение спроса в среднем на 2,63%. Увеличение дохода на 1% обусловливает при неизменных ценах рост спроса на 1,11%.

Логарифмируя (4.1), приходим опять к линейному уравнению регрессии.

Замена переменных:

В новых переменных модель запишется следующим образом:

Степенные (мультипликативные) модели получили широкое распространение в эконометрическом моделировании ввиду простой интерпретации параметров, которые представляют собой частные коэффициенты эластичности результативного признака по соответствующим факторным признакам.

Пусть, например, требуется оценить параметры производственной функции Кобба-Дугласа Y=AKaLb. Логарифмируя обе части, получаем

ln Y=lnA+alnK+blnL. (4.2)

Полученная формула линейна относительно логарифмов выпуска Y, капитала K и труда L, и она может быть оценена как множественная линейная регрессия.

Здесь α и β – эластичности выпуска по затратам капитала и труда соответственно. Сумма этих коэффициентов является таким важным экономическим показателем, как отдача от масштаба. При α + β = 1 говорят о постоянной отдаче от масштаба (во сколько раз увеличиваются затраты ресурсов, во столько же раз увеличивается выпуск). При α + β <1 имеет место убывающая отдача от масштаба (увеличение объема выпуска меньше увеличения затрат ресурсов). При α + β >1 – возрастающая отдача от масштаба (увеличение объема выпуска больше увеличения затрат ресурсов).

В частном случае, когда a+b=1, делается преобразование

Y/L =A(K/L)a Þ ln (Y/L) =lnA+aln(K/L). (4.3)

Далее оценивается парная линейная регрессия логарифма производительности труда Y/L от логарифма капиталовооруженности К/L. Если зависимость оценивается по данным временных рядов, то часть тренда зависимой переменной может объясняться действующими во времени факторами, например, в производственной функции Кобба-Дугласа нейтральный технический прогресс учитывают с помощью множителя е gt:

Y=AKaLb е gt Þ ln Y=lnA+alnK+blnL+ gt (4.4)

где t – время, параметр – темп прироста объема производства благодаря техническому прогрессу, и опять приходим к модели линейной регрессии.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)