|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Мультипликативные модели регрессии и их линеаризацияУравнение (3.1) называют аддитивным, тогда как уравнение вида у =a0 х 1a1 х 2a2 ´…´ х mam (4.1) называется мультипликативным. Коэффициенты аj являются коэффициентами эластичности. Например, при исследовании спроса на мясо получено уравнение где у – количество спрашиваемого мяса, х 1 – цена, х 2 – доход. Рост цен на 1% при том же доходе вызывает снижение спроса в среднем на 2,63%. Увеличение дохода на 1% обусловливает при неизменных ценах рост спроса на 1,11%. Логарифмируя (4.1), приходим опять к линейному уравнению регрессии. Замена переменных: В новых переменных модель запишется следующим образом: Степенные (мультипликативные) модели получили широкое распространение в эконометрическом моделировании ввиду простой интерпретации параметров, которые представляют собой частные коэффициенты эластичности результативного признака по соответствующим факторным признакам. Пусть, например, требуется оценить параметры производственной функции Кобба-Дугласа Y=AKaLb. Логарифмируя обе части, получаем ln Y=lnA+alnK+blnL. (4.2) Полученная формула линейна относительно логарифмов выпуска Y, капитала K и труда L, и она может быть оценена как множественная линейная регрессия. Здесь α и β – эластичности выпуска по затратам капитала и труда соответственно. Сумма этих коэффициентов является таким важным экономическим показателем, как отдача от масштаба. При α + β = 1 говорят о постоянной отдаче от масштаба (во сколько раз увеличиваются затраты ресурсов, во столько же раз увеличивается выпуск). При α + β <1 имеет место убывающая отдача от масштаба (увеличение объема выпуска меньше увеличения затрат ресурсов). При α + β >1 – возрастающая отдача от масштаба (увеличение объема выпуска больше увеличения затрат ресурсов). В частном случае, когда a+b=1, делается преобразование Y/L =A(K/L)a Þ ln (Y/L) =lnA+aln(K/L). (4.3) Далее оценивается парная линейная регрессия логарифма производительности труда Y/L от логарифма капиталовооруженности К/L. Если зависимость оценивается по данным временных рядов, то часть тренда зависимой переменной может объясняться действующими во времени факторами, например, в производственной функции Кобба-Дугласа нейтральный технический прогресс учитывают с помощью множителя е gt: Y=AKaLb е gt Þ ln Y=lnA+alnK+blnL+ gt (4.4) где t – время, параметр – темп прироста объема производства благодаря техническому прогрессу, и опять приходим к модели линейной регрессии.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |