АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определения. Линейная регрессионная модель для случая одной факторной переменной

Читайте также:
  1. C) екі факторлы модель
  2. GAP модель: (модель разрывов)
  3. II. О «мелких» случаях
  4. III Литературоведческие определения.
  5. VI. Вставьте в текст пропущенные слова и словосочетания. Дайте им определения.
  6. VII. Министерствам и ведомствам по молодежной политике стран-участниц Международной конференции
  7. Абсолютная тупость сердца: понятие, методика определения. Границы абсолютной тупости сердца в норме. Изменения границ абсолютной тупости сердца в патологии.
  8. Аварийно-спасательные устройства подводной лодки.
  9. Автокорреляция в остатках. Модель Дарбина – Уотсона
  10. Автономні інвестиції. Чинники автономних інвестицій: технічний прогрес, рівень забезпеченості основним капіталом, податки на підприємців, ділові очікування. Модель акселератора.
  11. Аддитивная модель временного ряда
  12. Академіна модель освіти

Рассмотрим сначала однофакторную регрессионную модель.

В этом случае имеется n пар наблюдений (x i, y i), i=1,2,…, n, над некоторыми случайными величинами Х={ x i} и Y={ y i}. Эти наблюдения можно представить точками на плоскости с координатами (x i, y i), получая так называемую диаграмму рассеяния. Задача построения регрессионной модели заключается в том, что необходимо подобрать некоторую кривую (график соответствующей функции) таким образом, чтобы она располагалась как можно “ближе” к этим точкам. Такого рода кривую называют эмпирической или аппроксимирующей кривой. Весьма часто тип эмпирической кривой определяется экспериментальными или теоретическими соображениями (исходя из законов экономической теории), в противном случае выбор кривой осуществить довольно трудно. Иногда точки на диаграмме рассеяния располагаются таким образом, что не наблюдается никакого их группирования, и, соответственно, нет никаких оснований предполагать наличие в наблюдениях какой-либо взаимозависимости.

Таким образом, результатом исследования статистической взаимозависимости на основе выборочных данных является построение уравнений регрессии вида y =f(x).

В самом простом случае предполагается, что f задает уравнение прямой f(x)= aх+b. Модель в этом случае имеет вид

у i= i +b +ei (i=1,2,…, n). (2.1)

Здесь ei являются вертикальными уклонениями точек (x i, y i) от аппроксимирующей прямой. Вопрос о нахождении формулы зависимости можно ставить после положительного ответа на вопрос о существования такой зависимости, но эти два вопроса можно решать и одновременно.

Для ответа на поставленные вопросы существуют специальные методы и, соответственно, показатели, значения которых определенным образом свидетельствуют о наличии или отсутствии линейной связи между переменными. Такими показателями являются коэффициент корреляции величин Х и Y, а также коэффициенты линейной регрессии a0 и a1, их стандартные ошибки и t-статистики, по значениям которых проверяется гипотеза об отсутствии связи величин Х и Y.

Угловой коэффициент a прямой линии регрессии Y на X называют коэффициентом регрессии Y на X и обозначают ryx.

Выражение sх2 = –()2 есть выборочная дисперсия Х (или квадрат выборочного среднего квадратического отклонения).

Выборочный коэффициент корреляции определяется равенством

ryx =(хух × у)/(sхsy), (2.2)

где sy есть выборочное среднее квадратическое отклонение Y.

(Верхняя черта, как это принято в теории вероятностей и математической статистике, означает среднее значение выборочной совокупности, в данном случае ).

Коэффициент корреляции измеряет силу (тесноту) линейной связи между Y и X. Он является безразмерной величиной, не зависит от выбора единиц измерения обеих переменных. Для него всегда выполняется 0 £ |ryx| £ 1, и чем ближе его значение к ±1, тем сильнее линейная связь. Коэффициент корреляции будет положительным, если зависимость переменных Х и Y прямо пропорциональная, и отрицательным, – если обратно пропорциональная.

При близости к нулю коэффициента корреляции, например, величин уровней инфляции и безработицы (что имело место фактически в экономике США в 1970-х – 1980-х годах) нужно не говорить сразу о независимости этих показателей, а попытаться построить более сложную (не линейную) модель их связи.

Если формула (1) линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных – множественной регрессией. Например, Кейнсом была предложена линейная модель зависимости частного потребления С от располагаемого дохода Х: С=С0+ С1Х, где С0 >0 – величина автономного потребления (при уровне дохода Х=0), 1>C1>0 – предельная склонность к потреблению (C1 показывает, на сколько увеличится потребление при увеличении дохода на единицу).

В случае парной линейной регрессии имеется только один объясняющий фактор х и линейная регрессионная модель записывается в следующем виде:

у = aх+b +e, (2.3)

где e – случайная составляющая с независимыми значениями Мe=0, De= s2.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)