АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задание 2

Читайте также:
  1. Window(x1, y1, x2, y2); Задание окна на экране.
  2. Б) Задание на проверку и коррекцию исходного уровня.
  3. В основной части решается практическое задание.
  4. Домашнее задание
  5. Домашнее задание
  6. Домашнее задание
  7. Домашнее задание
  8. Домашнее задание
  9. Домашнее задание
  10. Домашнее задание
  11. Домашнее задание
  12. Домашнее задание

 

1. В справочной службе вокзала железной дороги стоит телефон с пятью каналами. Приходящий вызов получает отказ тогда, когда все каналы заняты. Пусть среднее время занятости одного канала составляет 1 минуту. Интенсивность поступающих вызовов составляет 0,1 мин-1. Требуется найти вероятность отказа и относительную пропускную способность.

2. На железнодорожной станции находятся три кассы для продажи билетов на поезда дальнего следования. Когда все кассы заняты, пассажиры встают в очередь. Длина очереди не может превышать 50 человек. Среднее время обслуживания в одной кассе составляет 5 минут. Пассажиры прибывают на станцию для покупки билетов в среднем по два человека в минуту. Найти вероятность отказа и общее количество человек (требований), находящихся в системе.

3. Для условия задачи 1 найти вероятность обслуживания вызова, а также вероятность поступления одного вызова.

4. На железнодорожной станции имеется пять путей для обслуживания прибывающих железнодорожных составов. Интенсивность прибытия железнодорожных составов равна 15 составов в час. Среднее время обслуживания одного состава 20 минут. Предполагается, что очередь ожидающих обслуживания поездов может быть неограниченной длины. Найти вероятность занятости всех пяти путей железнодорожной станции и среднее время обслуживания состава.

5. Программист обслуживает вычислительный центр из 50 вычислительных машин (ВМ). В среднем ВМ дает сбой 0,05 час-1. Процесс наладки занимает в среднем 45 минут. Требуется определить абсолютную пропускную способность наладки ВМ программистом.

6. В локомотивном депо обслуживается 100000 железнодорожных вагонов. Каждый вагон в среднем подлежит ремонту один раз в два года. На ремонт вагона затрачивается в среднем 5 дней. Найти вероятность того, что депо занято обслуживанием вагонов.

7. Сервис-центр занимается посреднической деятельностью по продаже железнодорожных билетов и осуществляет часть своей деятельности по 3 телефонным линиям. В среднем в сервис-центр поступает 75 звонков в час. Среднее время обслуживания каждого звонка составляет 2 минуты. Определить вероятность того, что ни один канал не занят, а также вероятность отказа.

8. Преподаватель производит прием экзамена у группы студентов из 23 человек, пришедших в течение одной минуты. Время приема экзамена у одного студента в среднем составляет 20 мин. Студенты, ждущие приема экзамена, находятся в очереди. Определить среднее время ожидания студентом приема экзамена.

9. Для условия задачи 7 определить вероятность занятости одного и двух каналов телефонной линии.

10. В вагоне-ресторане интенсивность обслуживания клиентов в среднем составляет 20 человек в час. Обслуживанием клиентов занимаются два официанта, при этом среднее время обслуживания одного клиента составляет 10 минут. Среднее количество клиентов, покинувших очередь, не дождавшихся обслуживания, составляет 2 человека в час. Определить абсолютную пропускную способность вагона-ресторана.

11. Для условия задачи 7 определить абсолютную пропускную способность сервисного центра.

12. В читальный зал государственной библиотеки, которая имеет 30 посадочных мест, приходят посетители с интенсивностью 20 человек в час. Время пребывания каждого посетителя в среднем составляет 2 часа. Определить вероятность отказа посетителю в читальном зале и среднее число занятых посадочных мест.

13. Абонентский отдел библиотеки обслуживают 3 библиотекаря. Время обслуживания одним библиотекарем читателя в среднем составляет 5 минут. Интенсивность посещения читателями библиотеки составляет 4 человека в минуту. Если в момент прихода читателя все библиотекари заняты, то он встает в очередь. Требуется определить среднее число читателей, ожидающих начала обслуживания и время их пребывания в очереди.

14. Поток заданий в 4-процессорном компьютере является простейшим с интенсивностью 1000 заданий в минуту. Среднее время обработки задания каждым процессором составляет 3 секунды. Если при поступлении задания все процессоры заняты, то задание помещается в очередь (очередь не ограничена). Требуется определить среднюю длину очереди и среднее число занятых процессоров.

15. В компьютерном классе установлен один принтер, скорость печати которого в среднем составляет 2 страницы в минуту. Печать начинается сразу после поступления файла на порт принтера. Среднее время между поступлениями файлов на принтер составляет 1 минуту. Если в момент поступления файла на печать принтер занят, то задания выстраиваются в неограниченную очередь. Требуется определить среднюю длину очереди и общее время пребывания файлов в очереди, если каждый файл в среднем содержит по 5 страниц.

16. На базу данных (БД) сервера железной дороги поступает 10 запросов в секунду. Среднее время обработки каждого запроса составляет 1 секунду. Запрос, поступивший в момент обработки предыдущего запроса, становится в очередь. Определить вероятность наличия очереди и суммарное время, которое проведут запросы до обслуживания.

17. На железнодорожной станции расположена гостиница, в которой имеется 20 мест. Посетитель в случае занятости мест уходит в другую гостиницу. Среднее время снятия гостиницы клиентом составляет 8 часов. Интенсивность потока поступления клиентов составляет 5 человек в час. Определить вероятность отказа и абсолютную пропускную способность данной гостиницы.

18. На телефонной станции железной дороги имеются три линии. Вызов, поступивший, когда все линии заняты, получает отказ. Поток вызовов является пуассоновским с интенсивностью 0,5 вызовов в минуту. Время обслуживания распределено по экспоненциальному закону и в среднем продолжительность разговора составляет 3 минуты. Найти вероятность отказа, относительную и абсолютную пропускные способности и долю свободного времени, приходящегося в среднем на каждую линию.

19. Четырехканальный концентратор имеет буфер емкостью 10 Мб. Пакеты данных поступают на концентратор с интенсивностью 51 пакетов в секунду. Пакеты, поступившие в момент, когда заняты все каналы, выстраиваются в очередь в буфере обмена, если он занят – получают отказ. Средняя скорость одного канала 256 Кб в секунду. Определить абсолютную пропускную способность канала концентратора при среднем размере пакета 2 Кб.

20. Два рабочих обслуживают группу из четырех станков. Остановка рабочего станка происходит в среднем через 30 минут. Время работы и время наладки распределено по экспоненциальному закону. Найти среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

21. Для условия задачи 19 определить вероятность отказа передачи пакета и среднее число свободных каналов концентратора, если средний размер сообщения составляет 5 Кб.

22. Рассмотрим две рядом стоящие телефонные кабины, общая очередь перед которыми не бывает более трех человек («лишние» уходят к другим кабинам). Поток людей, желающих позвонить по телефону, является простейшим и имеет интенсивность 15 человек в час. Время, проводимое людьми в кабине, распределено по экспоненциальному закону и составляет в среднем 3 минуты. Найти среднюю долю времени, когда свободна одна кабина; вероятность того, что человеку придется искать другую кабину.

23. Для условия задачи 20 найти заданные характеристики системы, в которой два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью.

24. В буфете железнодорожной станции обслуживают клиентов два продавца. Интенсивность обслуживания одним продавцом составляет 0,5 человека в минуту. Посетители приходят в буфет со средним интервалом в 1 минуту. Если в момент прихода клиента все продавцы заняты, клиент встает в очередь, которая не может превышать 5 человек. Посетитель, не попавший в очередь, уходит в другой буфет. Определить вероятность отказа посетителю в обслуживании и среднее время ожидания в очереди.

25. Железнодорожный пропускной таможенный пункт состоит из трех линий досмотра. Время досмотра одного железнодорожного состава на линии досмотра в среднем составляет 4 часа. Интенсивность прибывающих составов составляет 2 состава в час. В случае занятости всех линий досмотра прибывший состав ставится на запасной путь. Определить абсолютную пропускную способность таможенного пункта и среднее время простоя линий досмотра.

26. Железнодорожная сортировочная горка, на которую подается простейший поток составов с интенсивностью 2 состава в час, представляет собой СМО с неограниченной очередью. Время обслуживания (роспуска) состава на горке имеет показательное распределение со средним значением времени 20 мин. Найти среднее число составов в очереди, среднее время пребывания состава в СМО, среднее время пребывания состава в очереди.

27. Автозаправочная станция (АЗС) имеет две колонки. Площадка возле нее допускает одновременное ожидание не более четырех машин. Поток машин, прибывающий на станцию, простейший с интенсивностью 1 машина в минуту. Время обслуживания автомашины распределено по показательному закону со средним значением 2 минуты. Найти для АЗС финальные вероятности состояния для 1, 2,3 и 4-х машин, абсолютную пропускную способность и вероятность отказа в обслуживании.

28. Имеется двухканальная простейшая СМО с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки в час. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход в 4 рубля. Содержание каждого канала обходится 2 руб. в час. Решить: выгодно или не выгодно в экономическом отношении увеличить число каналов СМО до трех, если доход от заявок находится из соотношения D=Ac, где с – доход от обслуженной заявки, А – абсолютная пропускная способность СМО.

29. В зубоврачебном кабинете три кресла, а в коридоре имеются три стула для ожидания приема. Поток клиентов распределен по простейшему закону с интенсивностью 12 клиентов в час. Время обслуживания клиента распределено показательно со средним значением 20 минут. Если все три стула в коридоре заняты, клиенты в очередь не становятся. Определить среднее число клиентов, обслуживаемых кабинетом за час, среднюю долю обслуженных клиентов из числа пришедших и среднее время, которое клиент проведет в коридоре и в кабинете.

30. Билетную кассу с одним окошком представим как СМО с неограниченной очередью. Касса продает билеты в пункты А и В; пассажиров, желающих купить билет в пункт А, приходит в среднем трое за 20 минут, а в пункт В – двое за 20 минут. Поток пассажиров можно считать простейшим. Кассир в среднем обслуживает трех пассажиров за 10 минут. Время обслуживания распределено по показательному закону. Установить, существуют ли финальные вероятности состояний СМО, и если да – вычислить первые три из них. Найти среднее число заявок в СМО, среднее время пребывания заявки в системе и среднее число заявок в очереди.

31. Железнодорожная касса имеет два окошка, в каждом из которых продаются билеты в два пункта: Москву и Петербург. Продажа билетов в оба направления одинакова по интенсивности, которая равна 0,45 пассажиров в минуту. Среднее время обслуживания пассажира (продажи ему билета) 2 минуты. Поступило рационализаторское предложение: для уменьшения очередей (в интересах пассажиров) сделать обе кассы специализированными. В первой продавать билеты только в Петербург, а во второй – только в Москву. Считать все потоки событий простейшими. Требуется проверить разумность этого предложения.

32. Рассматривается простейшая двухканальная СМО с «нетерпеливыми» заявками. Интенсивность потока заявок 3 заявки в час; среднее время обслуживания одной заявки 1 час; средний срок, в течение которого заявка «терпеливо» стоит в очереди, равен 0,5 ч. Подсчитать финальные вероятности состояний, ограничиваясь теми, которые не меньше 0,001. Найти относительную и абсолютную пропускные способности.

33. Ремонтный мастер обслуживает группу из 8-ми кассовых автоматов по продаже билетов в пригородные поезда. Наблюдения показали, что в среднем автомат требует вмешательства мастера раз в 2 ч. Поток требований на ремонт – простейший. Устранение неполадок в автомате занимает в среднем 6 мин, причем время ремонта есть величина случайная, распределенная по показательному закону. Определить коэффициент простоя мастера и среднюю длину очереди автоматов на обслуживание.

34. АТС имеет 6 линий связи. Поток требований на переговоры – простейший с интенсивностью один вызов в минуту. Среднее время переговоров – 3 мин. Закон распределения времени показательный. Определить вероятность отказа и коэффициент загрузки линий связи.

35. На станции метро 5 кассовых аппаратов. Из наблюдений установили, что к этим пяти аппаратам подходят в среднем 60 человек в минуту. Время обслуживания будем считать распределенным по показательному закону, со средним временем обслуживания 4 сек. Найти вероятность того, что все аппараты свободны и среднее число людей, находящихся у аппаратов.

36. В камеру хранения вокзала, состоящую из 5-ти секций, поступает простейший поток требований в среднем 2 требования в минуту. Время обслуживания распределено по показательному закону и составляет в среднем 2 минуты. Время ожидания в очереди составляет в среднем 4 минуты и распределено по показательному закону. Определить среднюю длину очереди, среднее число занятых секций и относительную пропускную способность системы.

37. В железнодорожной поликлинике в кабинете флюорографии проходят прием в среднем 2 человека в минуту. Время приема распределено по показательному закону. Поток посетителей простейший с интенсивностью 5 человек в минуту. Очередь посетителей, ожидающих приема, не ограничена. Определить среднюю длину очереди и абсолютную пропускную способность кабинета флюорографии.

38. Железнодорожная сортировочная горка, на которую подаются простейший поток составов с интенсивностью 2 состава в час, представляет собой СМО с неограниченной очередью. Время обслуживания (роспуска) состава на горке имеет показательное распределение со средним значением времени 15 мин. Найти среднее число составов в очереди, среднее время пребывания состава в очереди, а также абсолютную пропускную способность сортировочной горки.

39. На базу данных (БД) сервера железной дороги поступает 10 запросов в секунду. Среднее время обработки каждого запроса составляет 1 секунду. Запрос, поступивший в момент обработки предыдущего запроса, становится в очередь. Определить вероятность наличия очереди, вероятность отсутствия запроса и коэффициент загрузки сервера.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)