АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Однородные системы. Условия существования нулевых решений
Рассмотрим АХ= , = , Х= - векторстолбец. Эта однородная система всегда является совместной, т.к. она всегда имеет решение х=0. Решения этой системы обладают свойствами: Если х1 и х2 являются решениями системы, то так же является решением этой системы.
Говорят, что решение однородной системы образует конечномерное линейное векторное пространство. Пусть имеется векторов: . Векторы называют линейно независимыми, если из равенства следует, что все , в противном случае если векторы линейнозависимые. Пусть матрица А имеет вид:
, , , Тогда систему можно записать в виде , из равенства видно что если система не имеет не нулевых решений, то векторы являются линейнонезависимыми. Если система имеет нулевое решение, то векторы являются линейнозависимыми. Теорема: Для того чтобы векторы были линейнонезависимы, необходимо и достаточно чтобы ранг матрицы А образованный этими элементами равнялся n. Таким образом, чтобы решить однородную систему у-ий АХ= необходимо выполнить следующие действия: вычислить ранг матрицы А, если ранг совпадает с числом неизвестных, то однородная система линейных у-ий имеет одно решение. Если ранг матрицы А меньше числа неизвестных, то в матрице А можно найти S строк и S столбцов, таких, что определитель составленный из элементов лежащих на пересечении выбранных строк и столбцов не равнялся нулю. Предположим для определённости, что определитель состоит из S строк и S столбцов отличных от нуля, тогда перенося слагаемые в правую часть и оставляя в системе первые S уравнений, получим систему:
(3)
- свободные неизвестные (базисные неизвестные), придавая базисным неизвестным произвольные числовые значения из системы (3) можно найти , таким образом однородная система линейных у-ий может иметь одно или бесконечное множество решений, отсюда следует, что может иметь бесконечное кол-во решений или быть несовместной. Минором k-го порядка называют определитель размерностью (k´k), выбранный из матрицы размерностью (m´n). Если в матрице А вычёркивается строка Ni, а столбец Nj, то минор, получающийся при удалении строки и столбца называется алгебраическим дополнением. Наивысший порядок не вырожденных миноров называют – рангом (rang(A)) 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Поиск по сайту:
|