|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Раскрытие неопределенностей. Правило Лопиталя1. Неопределенность вида 0/0. Первое правило Лопиталя. Если = 0, то , когда последний существует. 2. Неопределенность вида ¥ / ¥. Второе правило Лопиталя. Если = ¥, то , когда последний существует. 3. Неопределенности вида 0 × ¥, ¥ - ¥, 1 ¥ и 0 0 сводятся к неопределенностям 0/0 и ¥ / ¥ путем алгебраических преобразований. Пример. Найти предел функции y = при x ® 0. Решение. Имеем неопределенность вида ¥ - ¥. Сначала преобразуем ее к неопределенности вида 0/0, для чего достаточно привести дроби к общему знаменателю. К полученному выражению два раза применим правило Лопиталя. Записывая последовательно все промежуточные вычисления, будем иметь: = = = =
50. Применение производных для исследования функций. Условия монотонности.
Нахождение значения функции и ее производной в характерных точках (пересечения с осями координат, экстремума, перегиба), нахождение нескольких дополнительных точек графика (не обязательно, используется для построения более точного графика). 2) Находим критические значения аргумента x; для этого:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |