Уравнение кривых в полярных координатах
Окружность
Круг, заданный уравнением .
Общее уравнение окружности с центром в () и радиусом имеет вид:
Это уравнение может быть упрощено для частных случаев, например
является уравнением, определяющим окружность с центром в полюсе и радиусом .[15]
Прямая
Радиальные прямые (те, которые проходят через полюс) определяются уравнением
где — угол, на который прямая отклоняется от полярной оси, то есть, где — наклон прямой в прямоугольной системе координат. Нерадиальная прямая, перпендикулярно пересекает радиальную прямую в точке определяется уравнением
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Поиск по сайту:
|