|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Условие монотонности и стационарности функции на интервалеТеорема 1. Для того чтобы дифференцируемая на интервале (a;b) функция возрастала (убывала) на этом интервале достаточно, чтобы производная была положительной (отрицательной) всюду на этом интервале. Доказательство. Рассмотрим случай, когда . Пусть x1 и x2 - любые две точки интервала (a;b), удовлетворяющие условию . На отрезке функция дифференцируема, а, следовательно, непрерывна. Поэтому к ней можно применить формулу Лагранжа: , где . По условию . Поэтому или , т.е. функция возрастает на интервале (a;b). Случай, когда , рассматривается аналогично.Теорема доказана. Из последней теоремы следует, что отличие от нуля производной является достаточным условием строгой монотонности функции. Однако это условие не является необходимым. Так, например, функция возрастает на любом интервале действительной оси, но при x=0 производная этой функции обращается в нуль (рис. 6). Следующая теорема устанавливает необходимое и достаточное условие монотонности функции.Теорема 2. Для того чтобы дифференцируемая на интервале (a;b) функция не убывала (не возрастала) на этом интервале, необходимо и достаточно, чтобы производная этой функции была неотрицательной (неположительной) всюду на этом интервале. Доказательство. 1) Докажем достаточность. Пусть . Рассмотрим любые две точки x1 и x2 интервала (a;b), удовлетворяющие условию . Повторяя рассуждения из доказательства предыдущей теоремы, получим: , где . Так как по условию , то , или , т.е. функция не убывает (не возрастает) на интервале (a;b). 2) Докажем необходимость. Пусть функция дифференцируема и не убывает (не возрастает) на интервале (a;b). Так как эта функция не убывает (не возрастает) на интервале (a;b), то она не может убывать (возрастать) ни в одной точке интервала (a;b). Поэтому, как следует из теоремы 16.1, производная ни в одной точке интервала (a;b) не может быть отрицательной (положительной).Теорема доказана. Стационарность - наибольшее и наименьшее значение функции. Находится через первую производную приравненной к нулю. 46. Понятие локального экстремума. Необходимое и достаточное условие существования экстремума. Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, т.е. f’’(x)<0, то кривая y=f(x) на этом интервале обращена выпуклостью вверх (кривая выпукла). Теорема 1'. Если во всех точках интервала (b, c) вторая производная функции f(x) положительна, т.е. f’’(x)>0, то кривая y=f(x) на этом интервале обращена выпуклостью вниз (кривая вогнута). Теорема 2. Пусть кривая определяется уравнением y=f(x). Если f’’(a)=0 или f’’(a) не существует и при переходе через значение x=a производная f’’(x) меняет знак, то точка кривой с абсциссой x=a есть точка перегиба.
48.Формула Тейлора. Формулы Тейлора для элементарных функций. Примеры. где x - некоторое число, лежащее между a и b. Аналогичным образом определяется левосторонний предел. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |